
CS9152 - DATABASE TECHNOLOGY UNIT – I

CS9152 – DATABASE
TECHNOLOGY

UNIT – I

DISTRIBUTED DATABASES

TEXT BOOK
1. Elisa Bertino, Barbara Catania, Gian Piero Zarri, “Intelligent Database Systems”,
Addison-Wesley, 2001.

REFERENCES
1. Carlo Zaniolo, Stefano Ceri, Christos Faloustsos, R.T.Snodgrass, V.S.Subrahmanian,
“Advanced Database Systems”, Morgan Kaufman, 1997.
2. N.Tamer Ozsu, Patrick Valduriez, “Principles of Distributed Database Systems”,
Prentice Hal International Inc. , 1999.
3. C.S.R Prabhu, “Object-Oriented Database Systems”, Prentice Hall Of India, 1998.
4. Abdullah Uz Tansel Et Al, “Temporal Databases: Theory, Design And
Principles”,Benjamin Cummings Publishers , 1993.
5. Raghu Ramakrishnan, Johannes Gehrke, “Database Management Systems”, Mcgraw Hill,
Third Edition, 2004.
6. Henry F Korth, Abraham Silberschatz, S. Sudharshan, “Database System Concepts”,
Fourth Ediion, McGraw Hill , 2002.
7. R. Elmasri, S.B. Navathe, “Fundamentals of Database Systems”, Pearson Education, 2004.

DISTRIBUTED DATABASES

CS9152 - DATABASE TECHNOLOGY UNIT – I

Syllabus:

UNIT I DISTRIBUTED DATABASES 5
Distributed Databases Vs Conventional Databases – Architecture –
Fragmentation – Query Processing – Transaction Processing – Concurrency
Control – Recovery.

Table of Contents

SL No. Topic Page
1 Introduction to Distributed Databases 2
2 Distributed Databases Vs Conventional

Databases
8

3 Architecture 9
4 Fragmentation 15
5 Query Processing 29
6 Transaction Processing 35
7 Concurrency Control 38
8 Recovery. 43
9 Sample Questions 49
10 University Questions 51

DISTRIBUTED DATABASES 2

CS9152 - DATABASE TECHNOLOGY UNIT – I

Topic – 1: Introduction to Distributed Databases

Distributed Databases- Definition

What is a distributed database?

 “A logically interrelated collection of shared data (and a description of this
data), physically distributed over a computer network”
 (DDBMS) is the software that manages the DDB and provides an access mechanism
that makes this distribution transparent to the users.

A database that consists of two or more data files located at different sites on a
computer network. Because the database is distributed, different users can access it
without interfering with one another. However, the DBMS must periodically
synchronize the scattered databases to make sure that they all have consistent data.

DDBMS to Avoid `islands of information’ problem…

A “Distributed Database”: is a logically interrelated collection of shared data (and a
description of this data), physically distributed over a computer network.

A “Distributed DBMS” (DDBMS): is a Software system that permits the
management of the distributed database and makes the distribution transparent to
users.

Fundamental Principle: make distribution transparent to user.

DISTRIBUTED DATABASES

data

DBMS

data

DBMS

data

DBMS

data

DBMS

Distributed Database System

3

http://www.webopedia.com/TERM/D/database_management_system_DBMS.html
http://www.webopedia.com/TERM/A/access.html
http://www.webopedia.com/TERM/U/user.html
http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/F/file.html
http://www.webopedia.com/TERM/D/data.html
http://www.webopedia.com/TERM/D/database.html

CS9152 - DATABASE TECHNOLOGY UNIT – I

• In distributed databases, data spread over multiple machines (also referred to as
sites or nodes.

• Network interconnects the machines
• Data shared by users on multiple machines

DDBMS has following characteristics:

• Collection of logically-related shared data.
• Data split into fragments.
• Fragments may be replicated.
• Fragments/replicas allocated to sites.
• Sites linked by a communication network.
• Data at each site is under control of a DBMS.
• DBMSs handle local applications autonomously.
• Each DBMS participates in at least one global application.

Important difference between DDBMS and distributed processing

DISTRIBUTED DATABASES 4

CS9152 - DATABASE TECHNOLOGY UNIT – I

Distributed processing of centralised DBMS

Distributed Processing

• Much more tightly coupled than a DDBMS.
• Database design is same as for standard DBMS
• No attempt to reflect organizational structure
• Much simpler than DDBMS
• More secure than DDBMS
• No local autonomy

Functions of a DDBMS

• Expect DDBMS to have at least the functionality of a DBMS.

DISTRIBUTED DATABASES 5

CS9152 - DATABASE TECHNOLOGY UNIT – I

Also to have following functionality:

• Extended communication services.
• Extended Data Dictionary.
• Distributed query processing.
• Extended concurrency control.
• Extended recovery services

Additional Functions Provided:
• Ability to access remote sites and transmit queries and data among various
sites via a communication network.
• Ability to track of the data distribution and replication in DDBMS catalog.
• Ability to devise execution strategies for queries and transaction that access
data from more than one site.
• Ability to decide on which copy of a replicated data item to access.
• Ability to maintain the consistency of copies of a replicated data item.
• Ability to recover from individual site crashes and from new types of failures
such as the failure of a communication link.

Hardware Level:
Multiple computers, called sites or nodes.
Communication network.
Local Area Network
Long-haul Network
Network Topologies

Advantages of DDBSs:

• Distributed nature of some database applications
• Local users
• Global users
• Increased reliability and availability
• Reliability - Probability that a system is up at a particular moment.
• Availability – Probability that the system is continuously available
during a time interval.
• Improvement is achieved by replicating data and software at more than
one site.
• Allowing data sharing while maintaining some measure of
local control
• Controlled sharing of data throughout the distributed system.
• Improved Performance
• Smaller database exists at a single site.
• Accesses to more than one site proceed in parallel.
• Reduced response time.

DISTRIBUTED DATABASES 6

CS9152 - DATABASE TECHNOLOGY UNIT – I

Advantages of distributed databases
 Capacity and incremental growth
 Increase reliability and availability
 Modularity
 Reduced communication overhead
 Protection of valuable data
 Efficiency and Flexibility
 Reflects organizational structure
 Improved shareability and local autonomy
 Improved availability
 Improved reliability
 Improved performance
 Economics
 Modular growth

Disadvantages of distributed databases

• Complexity
• Cost
• Security
• Integrity control more difficult
• Lack of standards
• Lack of experience
• Database design more complex or Increased complexity in system design and

implementation.

Applications of DDBMS:
 Manufacturing - especially multi-plant manufacturing
 Military command and control
 Electronic fund transfers and electronic trading
 Corporate MIS
 Airline restrictions
 Hotel chains
 Any organization which has a decentralized organization structure
 User access the distributed data via applications.

Two types of applications:

 Logical Applications: Applications that do not required data from other
sites.

 Physical Applications: Applications that required data from other sites.

DISTRIBUTED DATABASES 7

CS9152 - DATABASE TECHNOLOGY UNIT – I

Types of DDBMS

• In a homogeneous distributed database:

– All sites have identical software.
– Are aware of each other and agree to cooperate in processing user

requests.
– Each site surrenders part of its autonomy in terms of right to change

schemas or software.
– Appears to user as a single system.

• In a heterogeneous distributed database:

– Different sites may use different schemas and software.
• Difference in schema is a major problem for query processing.
• Difference in software is a major problem for transaction

processing.
– Sites may not be aware of each other and may provide only limited

facilities for cooperation in transaction processing.

DISTRIBUTED DATABASES 8

CS9152 - DATABASE TECHNOLOGY UNIT – I

Two main issues in DDBMS

 Making query from one site to the same or remote site.

 Logical database is partitioned in to different data streams and located at
different sites.

Topic – 2: Distributed Databases Vs Conventional Databases

 mimics organisational structure with data
 local access and autonomy without exclusion
 cheaper to create and easier to expand
 improved availability/reliability/performance by removing reliance on a

central site
 Reduced communication overhead

 Most data access is local, less expensive and performs better
 Improved processing power

 Many machines handling the database rather than a single server
 more complex to implement

DISTRIBUTED DATABASES 9

CS9152 - DATABASE TECHNOLOGY UNIT – I

 more costly to maintain
 security and integrity control
 standards and experience are lacking
 Design issues are more complex

Centralized Database System :

 All system components (data. DBMS software, secondary storage devices
and tapes for backup) reside at a single site.

 Remote access via terminals connected to the site is possible.

• Distributed Database:

 Physically spread over the sites of a computer network.
 Communication network
 Distributed Database Systems (DDBSs)
 Distributed Database Management System (DDBMS)

Topic – 3: Distributed Databases Architecture

Overview of Client-Server Architecture
• 3 levels of DDBMS software modules:
• Client - Applicatrion Processor (AP) or front-end machine
• Server – Database Processor (DP) or back-end machine
• Communications software
• Reference to DDBMS catalog by client
• Query processing:
• Client parses a query and decomposes it into a number of independent
site queries. Each site query is sent to the appropriate server site.
• Each server processes the local query and sends the resulting relation to
the client site.
• Client site combines the results of the subqueries to produce the result
of the originally submitted query.

Overview of Distributed Database Architecture

• Location Transparency
– User does not have to know the location of the data.
– Data requests automatically forwarded to appropriate sites

• Local Autonomy

DISTRIBUTED DATABASES 10

CS9152 - DATABASE TECHNOLOGY UNIT – I

– Local site can operate with its database when network connections fail
– Each site controls its own data, security, logging, recovery

 Synchronous Distributed Database
• All copies of the same data are always identical
• Data updates are immediately applied to all copies throughout network
• Good for data integrity
• High overhead  slow response times

 Advantages
• Increased reliability & availability
• Local control
• Modular growth
• Lower communication costs
• Faster response

 Disadvantages
• Software cost & complexity
• Processing overhead
• Data integrity
• Slow response

• Asynchronous Distributed Database
• Some data inconsistency is tolerated
• Data update propagation is delayed
• Lower data integrity
• Less overhead  faster response time

 Defines the structure of the system
o components identified
o functions of each component defined
o interrelationships and interactions between components defined

DDBS = DB + Communication
 non-centralised
 DDBMS

– Motivated by need to integrate operational data and to provide
controlled access
– manages the Distributed database
– makes the distribution transparent to the user

DISTRIBUTED DATABASES 11

CS9152 - DATABASE TECHNOLOGY UNIT – I

Centralized DBMS on a Network

Distributed DBMS Environment

DISTRIBUTED DATABASES

Site 5

Site 1

Site 2

Site 3
Site 4

Site 5

Site 1

Site 2

Site 3

Site 4

12

CS9152 - DATABASE TECHNOLOGY UNIT – I

Implicit Assumptions

 Data stored at a number of sites  each site logically consists of a single
processor.

 Processors at different sites are interconnected by a computer network  no
multiprocessors

o parallel database systems
 Distributed database is a database, not a collection of files  data logically

related as exhibited in the users’ access patterns
o relational data model

 D-DBMS is a full-fledged DBMS
o not remote file system, not a TP system

Dimensions of the Problem
 Distribution

o Whether the components of the system are located on the same machine
or not

 Heterogeneity
o Various levels (hardware, communications, operating system)
o DBMS important one

 data model, query language,transaction management algorithms
 Autonomy

o Not well understood and most troublesome
o Various versions

 Design autonomy: Ability of a component DBMS to decide on
issues related to its own design.

 Communication autonomy: Ability of a component DBMS to
decide whether and how to communicate with other DBMSs.

 Execution autonomy: Ability of a component DBMS to execute
local operations in any manner it wants to.

Issues of a DDBMS
 Data Allocation

– Where to locate data and whether to replicate?
 Data Fragmentation

– Partition the database
 Distributed catalog management
 Distributed transactions

DISTRIBUTED DATABASES 13

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Distributed Queries
 Making all of the above transparent to the user is the key of DDBMS’s
Replication or Data Replications in DDBMS

What Is Replication?

Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system.

Changes applied at one site are captured and stored locally before being forwarded
and applied at each of the remote locations.

Replication provides user with fast, local access to shared data, and protects
availability of applications because alternate data access options exist. Even if one site
becomes unavailable, users can continue to query or even update the remaining
locations.

Replication Objects, Groups, and Sites

The following sections explain the basic components of a replication system,
including replication sites, replication groups, and replication objects.

Replication Objects

A replication object is a database object existing on multiple servers in a distributed
database system.

Oracle's replication facility enables you to replicate tables and supporting objects such
as views, database triggers, packages, indexes, and synonyms. SCOTT.EMP and
SCOTT.BONUS are examples of replication objects.

Replication Groups

 In a replication environment, Oracle manages replication objects using
replication groups.

 By organizing related database objects within a replication group, it is easier to
administer many objects together

 create and use a replication group to organize the schema objects necessary to
support a particular database application. That is not to say that replication
groups and schemas must correspond with one another.

 Objects in a replication group can originate from several database schemas and
a schema can contain objects that are members of different replication groups.

 The restriction is that a replication object can be a member of only one group.

DISTRIBUTED DATABASES 14

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Database replication is the frequent electronic copying data from a database in
one computer or server to a database in another so that all users share the same
level of information.
 The result is a distributed database in which users can access data relevant to
their tasks without interfering with the work of others.
 If a site (or network path) fails, the data held there is unavailable
 Consider replication (duplication) of data to improve availability

 No replication:
– Disjoint fragments
 Partial replication:
– Site dependent
 Full replication:
– Every site has copy of all data
– slows down update for consistency
– expensive

Fragments of relations are placed across the sites multiple times
 increases reliability - if some sites fail, the data is still available
 increases locality - the data can be retrieved from the closest or local site
 increases performance - a certain fragment may be accessed by less users

• but the question
– of mutual consistency
– concurrency control
– transparency must be addressed

• A DB can be
– partitioned (no replication)
– replicated
• fully replicated - the whole DB is copied to each site
• partially replicated

What typical units of data are replicated in the process of data replication in
DDBMS?

 Data may be replicated row by row, table by table, or database by database,
depending on what you need.

If you need to be able to operate independently, then you have a number of
replication models to choose from, depending on how much latency is acceptable
and how much autonomy is required.

DISTRIBUTED DATABASES 15

http://searchoracle.techtarget.com/definition/distributed-database
http://whatis.techtarget.com/definition/0,,sid9_gci212964,00.html
http://searchdatamanagement.techtarget.com/definition/data

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Microsoft servers have a replication model that allows complete autonomy... but
could theoretically break atomicity.

o A distributed database is not stored in its entirety at a single physical
location. Instead, it is spread across a network of computers that are
geographically dispersed and connected via communications links.

o A distributed database allows faster local queries and can reduce network
traffic. With these benefits comes the issue of maintaining data integrity.

o A key objective for a distributed system is that it looks like a centralized
system to the user. The user should not need to know where a piece of data
is stored physically.

Comparison of Replication Alternatives:

 Full Replication Partial
Replication

Partitioning

Query
Processing

Easy Same Difficulty

Directory
Management

Easy or
nonexistent

 Same Difficulty

Concurrency
Control

Moderate Difficult Easy

Reliability Very High High Low

Reality Possible
Application

Realistic Possible
application

Topic – 4: Fragmentation

Concept
• Division of relation r into fragments r1, r2, …, rn which contain sufficient

information to reconstruct relation r.
• Horizontal fragmentation: each tuple of r is assigned to one or more fragments.
• Vertical fragmentation: the schema for relation r is split into several smaller

schemas.
– All schemas must contain a common candidate key (or superkey) to

ensure lossless join property.

DISTRIBUTED DATABASES 16

CS9152 - DATABASE TECHNOLOGY UNIT – I

– A special attribute, the tuple-id attribute may be added to each schema
to serve as a candidate key.

• Example : relation account with following schema.
• Account-schema = (branch-name, account-number, balance).

Distribution Design Issues
 Why fragment at all?
 How to fragment?
 How much to fragment?
 How to test correctness?
 How to allocate?
 Information requirements?
 Can't we just distribute relations?
 What is a reasonable unit of distribution?

o relation
 views are subsets of relations ê locality
 extra communication

o fragments of relations (sub-relations)
 concurrent execution of a number of transactions that access

different portions of a relation
 views that cannot be defined on a single fragment will require

extra processing
 semantic data control (especially integrity enforcement) more

difficult

Why fragment?
Usage:

- Apps work with views rather than entire relations.
Efficiency:

- Data stored close to where most frequently used.
- Data not needed by local applications is not stored.

Security:
- and so not available to unauthorized users.

Parallelism:
- With fragments as unit of distribution, T can be divided into several
subqueries that operate on fragments.

Disadvantages: Performance & Integrity.

Types of Fragmentation
a) Horizontal Fragmentation (HF)

– splitting the database by rows

DISTRIBUTED DATABASES 17

CS9152 - DATABASE TECHNOLOGY UNIT – I

– e.g. A-J in site 1, K-S in site 2 and T-Z in site 3
o Primary Horizontal Fragmentation (PHF)
o Derived Horizontal Fragmentation (DHF)

b) Vertical Fragmentation (VF)
– Splitting database by columns/fields
– e.g. columns/fields 1-3 in site A, 4-6 in site B
– Take the primary key to all sites

c) Hybrid Fragmentation (HF)
-Horizontal and vertical could even be combined

 Four types of fragmentation:
1. Horizontal: Consists of a subset of the tuples of a relation.

- Defined using Selection operation
- Determined by looking at predicates used by Ts.
- Involves finding set of minimal (complete and relevant)

predicates.

- Set of predicates is complete, iff, any two tuples in same fragment are
referenced with same probability by any application.

- Predicate is relevant if there is at least one application that accesses
fragments differently.

2. Vertical: subset of atts of a relation.
- Defined using Projection operation
- Determined by establishing affinity of one attribute to another.

3. Mixed: horizontal fragment that is vertically fragmented, or a vertical fragment that
is horizontally fragmented.

- Defined using Selection and Projection operations
4. Derived: horizontal fragment that is based on horizontal fragmentation of a parent
relation.

- Ensures fragments frequently joined together are at same site.
- Defined using Semijoin operation

a) Horizontal Fragmentation (HF)

DISTRIBUTED DATABASES 18

CS9152 - DATABASE TECHNOLOGY UNIT – I

-Fragments contain subsets of complete tuples (all attributes at all
sites)

How to reconstruct R= Rs1 Rs2 ……. Rsn

HORIZONTAL FRAGMENTATIONHORIZONTAL FRAGMENTATION

Original relation

A1 A2 ………. An
1

1

1

2

2

3

3

3

T1T1

T2T2

T3T3

..

.T60.T60

T61T61

..

..

TnTn

A1 A2 ………. An

A1 A2 ………. An
T1

T2

T3

.

.T60

T61

.

.

Tn

Site 1

Site 2

 

DISTRIBUTED DATABASES 19

CS9152 - DATABASE TECHNOLOGY UNIT – I

DISTRIBUTED DATABASES 20

CS9152 - DATABASE TECHNOLOGY UNIT – I

PHF – Example

DISTRIBUTED DATABASES 21

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Fragmentation of relation PROJ
o Applications:

 Find the name and budget of projects given their no.
• Issued at three sites

 Access project information according to budget
• one site accesses ≤200000 other accesses >200000

o Simple predicates
o For application (1)

 p1 : LOC = “Montreal”
 p2 : LOC = “New York”
 p3 : LOC = “Paris”

o For application (2)
 p4 : BUDGET ≤ 200000
 p5 : BUDGET > 200000

o Pr = Pr' = {p1,p2,p3,p4,p5}
o Minterm fragments left after elimination

m1 : (LOC = “Montreal”) Ù (BUDGET ≤ 200000)
m2 : (LOC = “Montreal”) Ù (BUDGET > 200000)
m3 : (LOC = “New York”) Ù (BUDGET ≤ 200000)
m4 : (LOC = “New York”) Ù (BUDGET > 200000)
m5 : (LOC = “Paris”) Ù (BUDGET ≤ 200000)
m6 : (LOC = “Paris”) Ù (BUDGET > 200000)

PHF – Correctness
 Completeness

o Since Pr' is complete and minimal, the selection predicates are complete
 Reconstruction

o If relation R is fragmented into FR = {R1,R2,…,Rr}
 R = È"Ri ÎFR Ri
 Disjointness

o Minterm predicates that form the basis of fragmentation should be
mutually exclusive.

DISTRIBUTED DATABASES 22

CS9152 - DATABASE TECHNOLOGY UNIT – I

Given a link L where owner(L)=S and member(L)=R, the derived horizontal fragments
of R are defined as

Ri = R Œ F Si, 1≤i≤w
where w is the maximum number of fragments that will be defined on R and
Si = sFi (S)
where Fi is the formula according to which the primary horizontal fragment Si is
defined.

DISTRIBUTED DATABASES 23

CS9152 - DATABASE TECHNOLOGY UNIT – I

More Examples:

Derived Horizontal FragmentationDerived Horizontal Fragmentation
Defined on a member relation of a link Defined on a member relation of a link
according to a selection operation specified according to a selection operation specified
on its owner.on its owner.

Link between the owner and the member Link between the owner and the member
relations is defined as relations is defined as equiequi--joinjoin

An An equiequi--join can be implemented by means join can be implemented by means
of of semijoinssemijoins..

Given a link L where owner (L) = S and Given a link L where owner (L) = S and
member (L) = R, the derived horizontal member (L) = R, the derived horizontal
fragments of R are defined asfragments of R are defined as

RRii = R = R αα SSii, 1 <= I <= w, 1 <= I <= w

Where,Where,
SSii = = σσ FFii (S)(S)

w is the max number of fragments that will be w is the max number of fragments that will be
defined on defined on

FFii is the formula using which the primary horizontal is the formula using which the primary horizontal
fragment fragment SSii is definedis defined

ExampleExample
Consider two tablesConsider two tables

EmpEmp PAYPAY

PAY1 = EMP1 PAY1 = EMP1 αα PAYPAY
PAY2 = EMP2 PAY2 = EMP2 αα PAYPAY

EmpEmp11 = = σσSal <= 20K Sal <= 20K ((EmpEmp))
EmpEmp22 = = σσSal > 20K Sal > 20K ((EmpEmp))

PAY1PAY1 PAY2PAY2

D3D3CC300300

D2D2BB200200

D1D1AA100100

DeptDeptNameNameIdId

20K20KD2D2

30K30KD3D3

10K10KD1D1

SalSalDeptDept

D2D2BB200200

D1D1AA100100

DeptDeptNameNameIdId

D3D3CC300300

DeptDeptNameNameIdId

DHF – Correctness
 Completeness

o Referential integrity
o Let R be the member relation of a link whose owner is relation S which

is fragmented as FS = {S1, S2, ..., Sn}. Furthermore, let A be the join
attribute between R and S. Then, for each tuple t of R, there should be a
tuple t' of S such that

 t[A]=t'[A]
 Reconstruction

o Same as primary horizontal fragmentation.
 Disjointness

o Simple join graphs between the owner and the member fragments.

b) Vertical Fragmentation (VF)

DISTRIBUTED DATABASES 24

CS9152 - DATABASE TECHNOLOGY UNIT – I

A1 A2 A3 A4

A1 A2 A3 A4

Original
Relation (R) t1

t2

tn

RS1

RS2

t1

t2

tn

t1

t2

tn

SITE1 SITE2

How to Reconstruct:

R=Rs1 Rs2 Rsn

TID –Tuple ID
Hidden Attribute to

ensure account
and simple join
reconstruction

RS1.TID=RS2.TID

Join condition

1

2

n

1

2

n

TID TID

VERTICAL FRAGMENTATIONVERTICAL FRAGMENTATION

 Has been studied within the centralized context
o design methodology
o physical clustering

 More difficult than horizontal, because more alternatives exist.
o Two approaches :
o grouping

 attributes to fragments
o splitting

 relation to fragments
 Overlapping fragments

o grouping
 Non-overlapping fragments

o splitting
We do not consider the replicated key attributes to be overlapping.

Advantage:
Easier to enforce functional dependencies
(for integrity checking etc.)

VF – Information Requirements
 Application Information

o Attribute affinities
 a measure that indicates how closely related the attributes are
 This is obtained from more primitive usage data

o Attribute usage values

DISTRIBUTED DATABASES 25

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Given a set of queries Q = {q1, q2,…, qq} that will run on the
relation R[A1, A2,…, An],

use(qi,•) can be defined accordingly

Two problems :
 Cluster forming in the middle of the CA matrix

o Shift a row up and a column left and apply the algorithm to find the
“best” partitioning point

o Do this for all possible shifts
o Cost O(m2)

 More than two clusters
o m-way partitioning
o try 1, 2, …, m–1 split points along diagonal and try to find the best point

for each of these
o Cost O(2m)

VF – Correctness
A relation R, defined over attribute set A and key K, generates the vertical partitioning
FR = {R1, R2, …, Rr}.

n Completeness
à The following should be true for A:

A =È ARi

n Reconstruction
à Reconstruction can be achieved by

R = ﾁ K Ri "Ri ÎFR

n Disjointness
à TID's are not considered to be overlapping since they are maintained by

the system
à Duplicated keys are not considered to be overlapping

More Examples:

Vertical Fragmentation of employee-info Relation

DISTRIBUTED DATABASES 26

use(qi,Aj) = 1 if attribute Aj is referenced by query qi

0 otherwise

CS9152 - DATABASE TECHNOLOGY UNIT – I

branch-name customer-name tuple-id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1=Πbranch-name, customer-name, tuple-id(employee-info)

1
2
3
4
5
6
7

account number balance tuple-id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2=Πaccount-number, balance, tuple-id(employee-info)

Vertical Fragmentation of Vertical Fragmentation of employeeemployee--info info
RelationRelation

Vertical Fragmentation & Horizontal Fragmentation of Employee Relation

Horizontal FragmentationHorizontal Fragmentation

Rows split : Sal > 20KRows split : Sal > 20K

Vertical FragmentationVertical Fragmentation

Columns split : Primary Columns split : Primary
Key retainedKey retained

D3D330K30KCC300300

D2D220K20KBB200200

D1D110K10KAA100100

DeptDeptSalSalNameNameIdId

D2D220K20KBB200200

D1D110K10KAA100100

DeptDeptSalSalNameNameIdId

D3D330K30KCC300300

DeptDeptSalSalNameNameIdId
CC300300

BB200200

AA100100

NameNameIdId

300300

200200

100100

IdId

D3D330K30K

D2D220K20K

D1D110K10K

DeptDeptSalSal

DISTRIBUTED DATABASES 27

CS9152 - DATABASE TECHNOLOGY UNIT – I

 c) Hybrid Fragmentation (HF)
 Horizontal or Vertical fragmentation of a Database schema will not be

sufficient to satisfy the requirements of user applications.

 In certain cases, a vertical fragmentation may be followed by a horizontal one,
or viceversa.

 In case of horizontal fragmentation, one has to stop when each fragment
consists of only one tuple, where as the termination part for vertical
fragmentation is one attribute per fragment.

 Since two two types of partitioning strategies are applied one after the other,
this alternative is called hybrid fragmentation.

A1 A2 A3 A4

A1 A2 A3 A4

Original
Relation (R) t1

t2

tn

RS1

RS2

t1

t2

tn

t1

t2

tn

SITE1 SITE2

How to Reconstruct:

R=Rs1 Rs2 Rsn

TID –Tuple ID
Hidden Attribute to

ensure account
and simple join
reconstruction

RS1.TID=RS2.TID

Join condition

1

2

n

1

2

n

TID TID

MIXED FRAGMENTATIONMIXED FRAGMENTATION

DISTRIBUTED DATABASES 28

CS9152 - DATABASE TECHNOLOGY UNIT – I

Advantages of Fragmentation

• Horizontal:
– allows parallel processing on fragments of a relation
– allows a relation to be split so that tuples are located where they are

most frequently accessed
• Vertical:

– allows tuples to be split so that each part of the tuple is stored where it is
most frequently accessed

– tuple-id attribute allows efficient joining of vertical fragments
– allows parallel processing on a relation

• Vertical and horizontal fragmentation can be mixed.
– Fragments may be successively fragmented to an arbitrary depth.

Advantages

1. Permits a number of transactions to executed concurrently

2. Results in parallel execution of a single query

3. Increases level of concurrency, also referred to as, intra query concurrency

4. Increased System throughput

Disadvantages

1. Applications whose views are defined on more than one fragment may suffer
performance degradation, if applications have conflicting requirements.

DISTRIBUTED DATABASES 29

CS9152 - DATABASE TECHNOLOGY UNIT – I

2. Simple asks like checking for dependencies, would result in chasing after data
in a number of sites

PHF Vs VF :

Primary Horizontal Primary Horizontal
FragmentationFragmentation

Primary horizontal fragmentation is Primary horizontal fragmentation is
defined by a selection operation on the defined by a selection operation on the
owner relation of a database schema.owner relation of a database schema.

Given relation Given relation RR ii, its horizontal fragments , its horizontal fragments
are given byare given by

RRii = = σσFiFi(R),(R), 1<= i <= w1<= i <= w
FiFi selection formula used to obtain fragment selection formula used to obtain fragment

RRii

The example mentioned in slide 20, can be The example mentioned in slide 20, can be
represented by using the above formula represented by using the above formula
asas

EmpEmp11 = = σσSal <= 20K Sal <= 20K
((EmpEmp))

EmpEmp22 = = σσSal > 20K Sal > 20K ((EmpEmp))

Vertical FragmentationVertical Fragmentation

GroupingGrouping

Starts by assigning each attribute to Starts by assigning each attribute to
one fragmentone fragment

At each step, joins some of the At each step, joins some of the
fragments until some criteria is fragments until some criteria is
satisfied.satisfied.

Results in overlapping fragmentsResults in overlapping fragments

SplittingSplitting

Starts with a relation and decides on Starts with a relation and decides on
beneficial partitioning based on the beneficial partitioning based on the
access behavior of applications to the access behavior of applications to the
attributes attributes

Fits more naturally within the topFits more naturally within the top--down down
designdesign

Generates nonGenerates non--overlapping fragments.overlapping fragments.

Topic – 5: Query Processing

What is a Query ?
A database query is the vehicle for instructing a DBMS to update or retrieve specific
data to/from the physically stored medium.

The actual updating and retrieval of data is performed through various “low-level”
operations.
Examples of such operations for a relational DBMS can be relational algebra
operations such as project, join, select, Cartesian product, etc.
While the DBMS is designed to process these low-level operations efficiently, it can
be quite the burden to a user to submit requests to the DBMS in these formats.

Consider the following request:
“Give me the vehicle ids of all Chevrolet Camaros built in the year 1977.”
While this is easily understandable by a human, a DBMS must be presented with a
format it can understand, such as this SQL statement:

DISTRIBUTED DATABASES 30

CS9152 - DATABASE TECHNOLOGY UNIT – I

select vehicle_id
from vehicles
where year = 1977

Note that this SQL statement will still need to be translated further by the DBMS so
that the functions/methods within the DBMS program can not only process the
request, but do it in a timely manner.

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

n Parsing and translation
 translate the query into its internal form. This is then translated into

relational algebra.
 Parser checks syntax, verifies relations

n Evaluation
 The query-execution engine takes a query-evaluation plan, executes that

plan, and returns the answers to the query.

Optimization

DISTRIBUTED DATABASES 31

CS9152 - DATABASE TECHNOLOGY UNIT – I

n A relational algebra expression may have many equivalent expressions
 E.g., σbalance<2500(∏balance(account)) is equivalent to

 ∏balance(σbalance<2500(account))
n Each relational algebra operation can be evaluated using one of several

different algorithms
 Correspondingly, a relational-algebra expression can be evaluated in

many ways.
n Annotated expression specifying detailed evaluation strategy is called an

evaluation-plan.
 E.g., can use an index on balance to find accounts with balance < 2500,
 or can perform complete relation scan and discard accounts with

balance ≥ 2500

n Query Optimization: Amongst all equivalent evaluation plans choose the one
with lowest cost.

 Cost is estimated using statistical information from the
 database catalog

è e.g. number of tuples in each relation, size of tuples, etc.

using client-server architecture
 user creates query
 client parses and sends to server(s) (SQL?)
 servers return appropriate Tables
 client combines into one Table
 Issue of data transfer cost over a network
o optimise the query to transfer the least amount

DISTRIBUTED DATABASES 32

CS9152 - DATABASE TECHNOLOGY UNIT – I

Query Processing Components

 Query language that is used
o SQL: “intergalactic dataspeak”

 Query execution methodology
o The steps that one goes through in executing high-level (declarative)

user queries.
 Query optimization

o How do we determine the “best” execution plan?

Query Optimization Objectives
 Minimize a cost function

 I/O cost + CPU cost + communication cost
 These might have different weights in different distributed environments
 Wide area networks

o communication cost will dominate
 low bandwidth
 low speed
 high protocol overhead

o most algorithms ignore all other cost components
 Local area networks

o communication cost not that dominant
o total cost function should be considered

 Can also maximize throughput

DISTRIBUTED DATABASES 33

CS9152 - DATABASE TECHNOLOGY UNIT – I

Query Optimization Issues – Types of Optimizers
 Exhaustive search

o cost-based
o optimal
o combinatorial complexity in the number of relations

 Heuristics
o not optimal
o regroup common sub-expressions
o perform selection, projection first
o replace a join by a series of semijoins
o reorder operations to reduce intermediate relation size
o optimize individual operations

Optimization Granularity
 Single query at a time

o cannot use common intermediate results
 Multiple queries at a time

o efficient if many similar queries
o decision space is much larger

Optimization Timing
 Static

o compilation Þ optimize prior to the execution
o difficult to estimate the size of the intermediate results Þ error

propagation
o can amortize over many executions
o R*

 Dynamic
o run time optimization
o exact information on the intermediate relation sizes
o have to reoptimize for multiple executions
o Distributed INGRES

 Hybrid
o compile using a static algorithm
o if the error in estimate sizes > threshold, reoptimize at run time
o MERMAID

Statistics
 Relation

o cardinality
o size of a tuple

DISTRIBUTED DATABASES 34

CS9152 - DATABASE TECHNOLOGY UNIT – I

o fraction of tuples participating in a join with another relation
 Attribute

o cardinality of domain
o actual number of distinct values

 Common assumptions
o independence between different attribute values
o uniform distribution of attribute values within their domain

Decision Sites
 Centralized

o single site determines the “best” schedule
o simple
o need knowledge about the entire distributed database

 Distributed
o cooperation among sites to determine the schedule
o need only local information
o cost of cooperation

 Hybrid
o one site determines the global schedule

 each site optimizes the local subqueries
Network Topology

 Wide area networks (WAN) – point-to-point
o characteristics

 low bandwidth
 low speed
 high protocol overhead

o communication cost will dominate; ignore all other cost factors
o global schedule to minimize communication cost
o local schedules according to centralized query optimization

 Local area networks (LAN)
o communication cost not that dominant
o total cost function should be considered
o broadcasting can be exploited (joins)
o special algorithms exist for star networks

DISTRIBUTED DATABASES 35

CS9152 - DATABASE TECHNOLOGY UNIT – I

Step 1 – Query Decomposition
 Input : Calculus query on global relations

 Normalization
o manipulate query quantifiers and qualification

 Analysis
o detect and reject “incorrect” queries
o possible for only a subset of relational calculus

 Simplification
o eliminate redundant predicates

 Restructuring
o calculus query Þ algebraic query
o more than one translation is possible
o use transformation rules

Step 2 – Data Localization
 Input: Algebraic query on distributed relations
 Determine which fragments are involved
 Localization program

o substitute for each global query its materialization program
o optimize

Step 3 – Global Query Optimization
 Input: Fragment query
 Find the best (not necessarily optimal) global schedule

o Minimize a cost function
o Distributed join processing

DISTRIBUTED DATABASES 36

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Bushy vs. linear trees
 Which relation to ship where?
 Ship-whole vs ship-as-needed

o Decide on the use of semijoins
 Semijoin saves on communication at the expense of more local

processing.
o Join methods

 nested loop vs ordered joins (merge join or hash join)

Centralized Query Optimization
 INGRES

o dynamic
o interpretive

 System R
o static
o exhaustive search

Topic – 6: Transaction Processing

Transaction
A transaction is a collection of actions that make consistent transformations of system
states while preserving system consistency.

 concurrency transparency
 failure transparency

 Transaction may access data at several sites.
 Each site has a local transaction manager responsible for:
 Maintaining a log for recovery purposes
 Participating in coordinating the concurrent execution of the transactions executing
at that site.
 Each site has a transaction coordinator, which is responsible for:
 Starting the execution of transactions that originate at the site.
 Distributing subtransactions at appropriate sites for execution.
 Coordinating the termination of each transaction that originates at the site, which
may result in the transaction being committed at all sites or aborted at all sites.

Transaction system Architecture

DISTRIBUTED DATABASES 37

CS9152 - DATABASE TECHNOLOGY UNIT – I

Database in a consistent state ------------------------

Database may be temporarily in an inconsistent state during execution
--

Database in a consistent state

Transaction Structure
Flat transaction

- Consists of a sequence of primitive operations embraced between a begin and
end marks.
 Begin_transaction Reservation

.

.
 End.

Nested Transaction
-The operations of a transaction may themselves be transactions.

Begin_transaction Reservation

Begin_ transaction Airline .
.

 End. Airline
.
Begin_ transaction Hotel .

.
 End. Hotel

DISTRIBUTED DATABASES 38

CS9152 - DATABASE TECHNOLOGY UNIT – I

 End. Reservation

Properties of Transactions

ACID (Atomicity, Consistency, Isolation, Durability) Property

Atomicity  All or Nothing
Consistency  No violation of integrity constraints
Isolation  Concurrent changes invisible & serialisable
Durability  Committed update persist

Transaction Processing Issues

Transaction structure (usually called transaction model)
Flat(simple), nested

Internal database consistency
- Semantic data control (integrity enforcement) algorithms

Reliability Protocols
Atomicity & Durability
Local recovery protocols
Global commit protocols

DISTRIBUTED DATABASES 39

CS9152 - DATABASE TECHNOLOGY UNIT – I

Concurrency control algorithms
- How to synchronize concurrent transaction executions (correctness

criterian)
- Intra-transaction consistency, isolation

Replica control protocols
- How to control the mutual consistency of replicated data
- One copy of equivalence and ROWA

Topic – 7: Concurrency Control

What’s concurrency control?
Concurrency control deals with preventing concurrently running processes from
improperly inserting, deleting, or updating the same data. Concurrency control is
maintained through two mechanisms: Transactions and Locks.

 What’s transactions?

A transaction is a logical unit of work. It is both the unit of work and the unit of
recovery. The statements nested within a transaction must either all happen or none
happen.

Transactions are a mandatory facility for maintaining the integrity of a database while
running multiple concurrent operations.

Transactions are atomic: there is no such thing as a partial transaction.

 A set of transactions is said to be serializable if and only if it produces the same result
as some arbi trary serial execution of those same transactions for arbitrary input. A set
of transactions can be correct only if it is serializable.

Transactions are a mandatory facility for maintaining the integrity of a database while
running multiple concurrent operations. A transaction is a logical unit of work. It is
both the unit of work and the unit of recovery.

The statements nested within a transaction must either all happen or none happen.
Transactions are atomic: there is no such thing as a partial transaction.
Concurrency control deals with preventing concurrently running processes from
improperly inserting, deleting, or updating the same data.

Two Concurrency control mechanisms:
Concurrency control is maintained through two mechanisms: Transactions and Locks.

DISTRIBUTED DATABASES 40

CS9152 - DATABASE TECHNOLOGY UNIT – I

What’s lock?
A lock is a means of claiming usage rights on some resource.

There can be several different types of resources that can be locked and several
different ways of locking those resources.

Most locks used on Teradata resources are locked automatically by default. The
Teradata lock manager implicitly locks the following objects:
Database, Table, View and Row hash.

User can apply four different levels of locking on Teradata resources:
Exclusive, Write, Read and Access.

The Teradata R DBMS applies most of its locks automatically.

 Modify concurrency control schemes for use in distributed environment.
 We assume that each site participates in the execution of a commit protocol to
ensure global transaction automicity.
 We assume all replicas of any item are updated

 The problem of synchronizing concurrent transactions such that the
consistency of the database is maintained while, at the same time, maximum
degree of concurrency is achieved.

 Anomalies:
o Lost updates

 The effects of some transactions are not reflected on the
database.

o Inconsistent retrievals
 A transaction, if it reads the same data item more than once,

should always read the same value.
 Extends centralised concurrency mechanisms
 Multiple copies of data items

o maintain consistency
 failures in individual sites/network

o continue operations, update and rejoin
 distributed commit

o 2-phase protocol (local and global)
 distributed deadlock
 Global serialisation must occur

o i.e. serialise local serialisations!
o Locks and timestamping apply

DISTRIBUTED DATABASES 41

CS9152 - DATABASE TECHNOLOGY UNIT – I

 If database not replicated and transactions all local or performable at one
remote site then:

o Use centralised concurrency mechanisms
 Otherwise mechanisms need to be extended

o To deal with replication or transactions involving multiple sites
 Need to consider deadlocks at local and global levels

Distributed Locks
 Just like centralised mechanisms…. But we need to consider locks that manage

replication and sub-transactions
 Four modes of management possible:

o Centralised 2PL
 Read any copy, update all for updates
 Single site, bottleneck, failure?

o Primary Copy 2PL
 Distributes locks, one copy designated primary, others slaves
 Only primary copy locked for updates, slaves updated later

o Distributed 2PL
 Each site manages its own data locks
 All copies locked for an update, high cost of comms

o Majority Locking

Diagrammatic representation

 Centralised: e.g. Site 1 is the only Lock Manager
 Primary Copy: e.g. Site 1 handles locks on D1/D3

o Site 3 handles locks on D2
o remember the site does NOT have to hold the PC

DISTRIBUTED DATABASES

D=Data item (PC=Primary Copy, only for Primary copy 2PL)

42

D1
D2

D1 (PC)
D2
D3 (PC)

D2 (PC)
D3

Site 1 Site 2

Site 3

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Distributed: All sites lock own data
 (lock all copies for writing)

Majority Locking
 Extension of distributed 2PL
 Doesn’t lock all copies before update
 Needs more than half of locks on a copy to proceed
 If so, it informs other sites
 Otherwise it cancels request
 Only one transaction with an exclusive lock
 Many transactions can hold a majority lock on a shared lock

Deadlock

Example

DISTRIBUTED DATABASES

T1 waiting for T2

T2 waiting for T3

43

T3 waiting for T1 T1

CS9152 - DATABASE TECHNOLOGY UNIT – I

Distributed Reliability Protocols
 Commit protocols

o How to execute commit command for distributed transactions.
o Issue: how to ensure atomicity and durability?

 Termination protocols
o If a failure occurs, how can the remaining operational sites deal with it.
o Non-blocking : the occurrence of failures should not force the sites to

wait until the failure is repaired to terminate the transaction.
 Recovery protocols

o When a failure occurs, how do the sites where the failure occurred deal
with it.

o Independent : a failed site can determine the outcome of a transaction
without having to obtain remote information.

 Independent recovery Þ non-blocking termination

Topic – 8: Recovery

Purpose of Database Recovery
• To bring the database into the last consistent state, which existed

prior to the failure.

DISTRIBUTED DATABASES

Locally:

44

Site 1: T3 waiting for T1

Site 3: T2 waiting for T3

Text  T3  T1  Text

Text  T1  T2  Text

Text  T2  T3  Text

Site 1 sends WFG to site 2, site 2 combines WFG to

Text  T3  T1  T2  Text

Site 2 sends WFG to site 3, site 3 combines WFG to

Text  T3  T1  T2  T3  Text

Definitely Deadlock!

Maybe
Deadlock?

CS9152 - DATABASE TECHNOLOGY UNIT – I

• To preserve transaction properties (Atomicity, Consistency,
Isolation and Durability).

Example: If the system crashes before a fund transfer transaction completes its
execution, then either one or both accounts may have incorrect value. Thus, the
database must be restored to the state before the transaction modified any of the
accounts.

Ensures database is fault tolerant, and not corrupted by software, system or media
failure

– 7x24 access to mission critical data.

 Failure can occur through

– Loss of message

 By network protocol

 DDBMS deals with it transparently

– Loss of a communication link

 Network partitioning (see diagram)

– Site failure

Types of Failure
The database may become unavailable for use due to

• Transaction failure: Transactions may fail because of incorrect input,
deadlock, incorrect synchronization.

• System failure: System may fail because of addressing error,
application error, operating system fault, RAM failure, etc.

• Media failure: Disk head crash, power disruption, etc.

Database Recovery Techniques

Transaction Log
For recovery from any type of failure data values prior to modification (BFIM -
BeFore Image) and the new value after modification (AFIM – AFter Image) are
required. These values and other information is stored in a sequential file called
Transaction log.

Data Update

DISTRIBUTED DATABASES 45

CS9152 - DATABASE TECHNOLOGY UNIT – I

• Immediate Update: As soon as a data item is modified in cache, the
disk copy is updated.

• Deferred Update: All modified data items in the cache is written
either after a transaction ends its execution or after a fixed number of
transactions have completed their execution.

• Shadow update: The modified version of a data item does not
overwrite its disk copy but is written at a separate disk location.

• In-place update: The disk version of the data item is overwritten by the
cache version.

Data Caching
Data items to be modified are first stored into database cache by the Cache Manager
(CM) and after modification they are flushed (written) to the disk. The flushing is
controlled by Modified and Pin-Unpin bits.

Pin-Unpin: Instructs the operating system not to flush the data item.
Modified: Indicates the AFIM of the data item

Roll-back: One execution of T1, T2 and T3 as recorded in the log.

Write-Ahead Logging
When in-place update (immediate or deferred) is used then log is necessary for
recovery and it must be available to recovery manager. This is achieved by Write-
Ahead Logging (WAL) protocol.

Checkpointing
Time to time (randomly or under some criteria) the database flushes its buffer to
database disk to minimize the task of recovery.

Steal/No-Steal and Force/No-Force
Possible ways for flushing database cache to database disk:
Steal: Cache can be flushed before transaction commits.
No-Steal: Cache cannot be flushed before transaction commit.
Force: Cache is immediately flushed (forced) to disk.
No-Force: Cache is deferred until transaction commits.

Recovery Scheme
Deferred Update (No Undo/Redo)

Recovery in multidatabase system

 The multiple nodes agree to commit individually the part of the transaction
they were executing. This commit scheme is referred to as “two-phase
commit” (2PC).

DISTRIBUTED DATABASES 46

CS9152 - DATABASE TECHNOLOGY UNIT – I

 If any one of these nodes fails or cannot commit the part of the transaction,
then the transaction is aborted. Each node recovers the transaction under its
own recovery protocol.

 E.g. S4 out of contact with S1
– S4 crashed?
– Link down?
– Partitioned?
– S4 busy?

Recovery after failure?
 Distributed recovery maintains atomicity and durability
 What happens then?

– Abort transactions affected by the failure
 Including all subtransactions

– Flag the site as failed
– Check for recovery or wait for message to confirm
– On restart, abort partial transactions which were active at the time of the

failure
– Perform local recovery
– Update copy of database to be consistent with remainder of the system

• Rcovery Protocol
Protocols at failed site to complete all transactions outstanding at the time of

failures.
• Classes of failures

1. Site failure
2. Lost messages
3. Network partitioning
4. Byzantine failures

DISTRIBUTED DATABASES 47

S4

S5

S1

S2

S3

CS9152 - DATABASE TECHNOLOGY UNIT – I

• Effects of failures
1. Inconsistent database
2. Transaction processing is blocked
3. Failed component unavailable

• Independent Recovery
A recovering site makes a transition directly to a final state without

communicating with other sites.
• Lemma

For a protocol, if a local state’s concurrency set contains both an abort and
commit, it is not resilient to an arbitrary failure of a single site.
Si → commit because other sites may be in abort
Si → abort because other sites may be in commit
Rule 1: S: Intermediate state
If C(s) contains a commit ⇒ failure transition from S to commit
Otherwise failure transition from S to abort

Unscheduled restarts occur for one of the following reasons:
 AMP or disk failure
 Software failure
 Parity error

Transaction recovery describes how the Teradata RDBMS restarts itself after a system
or media failure.
Two types of automatic recovery of transactions can occur when an unscheduled
restart occurs:

 Single transaction recovery
 RDBMS recovery

The following table details when these two automatic recovery mechanisms take
place:

This Recovery Type Happens When

Single transaction

The RDBMS aborted a single transaction
because of:

 Transaction deadlock timeout
 User error
 User-initiated abort command
 An inconsistent data table
 Unavailable resources for parsing

DISTRIBUTED DATABASES 48

CS9152 - DATABASE TECHNOLOGY UNIT – I

 Single transaction recovery uses
the transient journal to effect its
data restoration

RDBMS A RDBMS restart is caused by:
 Hardware failure
 Software failure
 User command

Two-Phase Commit Protocol
Two-phase commit (2PC) is a protocol for assuring concurrency of data in multiple
databases in which each participant database manager votes to either commit or abort
the changes.
The participants wait before committing the change until it is known that all
participants can commit. By voting to commit, the participant guarantees that it can
either commit or rollback its part of the transaction, even if it crashes before receiving
the result of the vote.

The 2PC protocol allows C ICS and IMS applications to be developed that can update
one or more Teradata RDBMS databases and/or databases under some other DBMS in

DISTRIBUTED DATABASES 49

CS9152 - DATABASE TECHNOLOGY UNIT – I

a synchronized manner. The result is that all updates requested in a defined unit of
work will either succeed or fail.

2PC Recovery Protocols – Additional Cases

Arise due to non-atomicity of log and message send actions.

Sample Questions

Topic – 1:

1. What is a distributed database? (2M)
2. Define “Distributed DBMS” (DDBMS) (2M)
3. What are the characteristics of DDBMS ? (2M)
4. What is important difference between DDBMS and distributed processing? (2M)
5. What are the Functions of a DDBMS ? (2M)
6. What are the Advantages and Disadvantages of DDBSs? (2M)

DISTRIBUTED DATABASES 50

CS9152 - DATABASE TECHNOLOGY UNIT – I

7. What are the Applications of DDBMS? (2M)
8. Explain in detail about the Types of DDBMS. (16M)
9. List the two main issues in DDBMS (2M)

Topic – 2:
1. Explain Distributed Database in detail. (8M)
2. Explain Centralized Database System in detail. (8M).
3. List and differentiate between Distributed Databases Vs Conventional

Databases

Topic – 3:

1. Explain the Client-Server Architecture with a neat diagram. (8M)
2. Explain the Distributed Database Architecture with a neat diagram. (8M)
3. What is Synchronous Distributed Database?
4. What is Asynchronous Distributed Database?
5. Explain the major issues a DDBMS in detail. (8M)
6. Explain how Replication or Data Replications used in DDBMS. (8M)

Topic – 4:
1. What is the Concept behind fragmentation ? Give examples. (8M)
2. Why we need fragmentation? (2M)
3. Explain in detail the Types of Fragmentation and give examples for

each. (16M)
4. Explain in detail on Horizontal Fragmentation (HF). (8M)
5. Explain in detail on Vertical Fragmentation (VF). (8M)
6. Explain in detail on Hybrid Fragmentation (HF). (8M)
7. Two problems :
8. What are the Advantages and Disadvantages of Fragmentation (2M)
9. Compare and contrast the PHF and VF. (8M)

Topic – 5:

1. What is a Query ? (2M)
2. What are Query Processing? (2M)
3. List and describe the basic Steps in Query Processing. (8M)
4. Explain the concept of Query Optimization. (8M)
5. List and describe the Query Processing Components. (8M)
6. List the Query Optimization Objectives. (4M)
7. Explain the major Query Optimization Issues. (8M)

DISTRIBUTED DATABASES 51

CS9152 - DATABASE TECHNOLOGY UNIT – I

8. Explain in details on Query processing (8M)
9. What are Centralized Query Optimization? Explain briefly. (8M)

Topic – 6:
1. What is transaction ? Give examples. (2M)
2. Give the local transaction manager responsibilities. (2M)
3. Explain in detail on Transaction system Architecture. Illustrate with a neat

diagram (8M)
4. Explain Transaction Structure in detail. (8M)
5. What are the three major Properties of Transactions ? (2M)
6. What is ACID?
7. List and describe the Transaction Processing Issues. (8M).

Topic – 7:
1. What is currency control ? (2M)
2. Explain Concurrency control mechanisms. (2M)
3. What’s lock? (2M)
4. What is Distributed Locks ? (2M)
5. Describe the Majority Locking. (2M)
6. Explain in detail on currency control in handled in DDBMS. (8M)

Topic – 8:
1. What is Failure? (2M)
2. What is Recovery? (2M)
3. Is Recovery after failure? Explain. (2M)
4. Explain about Recovery Protocol. (2M)
5. What are the major Effects of failures? (8M)
6. Explain in detail about two automatic recovery mechanisms (8M)
7. Explain in detail on Two-Phase Commit Protocol. (8M)
8. Explain in detail on Recovery in handled in DDBMS. (8M)

University Questions
1. Differentiate homogenous and hetrogenous databases with reference to

distributed databases. (2M)
2. Name the fragmentations supported in a distributed system and write examples

for each. (2M)
3. Explain how concurrency control and recovery techniques are handled in

DDBMS. (16M)

DISTRIBUTED DATABASES 52

CS9152 - DATABASE TECHNOLOGY UNIT – I

4. Draw simplified physical client Architecture for distributed database systems
and discuss in detail (8M)

5. Discuss the techniques of fragmentation, data replication used in distributed
database design. (8M)

*************************** End of Unit – I ************************

DISTRIBUTED DATABASES 53

	What Is Replication?
	Replication Objects, Groups, and Sites
	Replication Objects
	Replication Groups

	What typical units of data are replicated in the process of data replication in DDBMS?

