
CS9152 - DATABASE TECHNOLOGY UNIT – II

CS9152 – DATABASE
TECHNOLOGY

UNIT – II
OBJECT ORIENTED DATABASES

TEXT BOOK
1. Elisa Bertino, Barbara Catania, Gian Piero Zarri, “Intelligent Database Systems”,
Addison-Wesley, 2001.

REFERENCES
1. Carlo Zaniolo, Stefano Ceri, Christos Faloustsos, R.T.Snodgrass, V.S.Subrahmanian,
“Advanced Database Systems”, Morgan Kaufman, 1997.
2. N.Tamer Ozsu, Patrick Valduriez, “Principles of Distributed Database Systems”,
Prentice Hal International Inc. , 1999.
3. C.S.R Prabhu, “Object-Oriented Database Systems”, Prentice Hall Of India, 1998.
4. Abdullah Uz Tansel Et Al, “Temporal Databases: Theory, Design And
Principles”,Benjamin Cummings Publishers , 1993.
5. Raghu Ramakrishnan, Johannes Gehrke, “Database Management Systems”, Mcgraw
Hill, Third Edition, 2004.
6. Henry F Korth, Abraham Silberschatz, S. Sudharshan, “Database System Concepts”,
Fourth Ediion, McGraw Hill , 2002.
7. R. Elmasri, S.B. Navathe, “Fundamentals of Database Systems”, Pearson Education,
2004.

OBJECT ORIENTED DATABASES

CS9152 - DATABASE TECHNOLOGY UNIT – II

Syllabus:

UNIT II OBJECT ORIENTED DATABASES 10
Introduction to Object Oriented Data Bases - Approaches - Modeling and Design –
Persistence – Query Languages –Transaction – Concurrency – Multi Version Locks
–Recovery.

Table of Contents

SL No. Topic Page
1 Introduction to Object Oriented Data Bases 2
2 Approaches 12
3 Modeling and Design 14
4 Persistence 21
5 Query Languages 23
6 Transaction 27
7 Concurrency 28
8 Multi Version Locks 29
9 Recovery. 31
10 Sample Questions 34
11 University Questions 36

OBJECT ORIENTED DATABASES 2

CS9152 - DATABASE TECHNOLOGY UNIT – II

Topic – 1: Introduction to Object Oriented Data Bases

Object Databases
 Became commercially popular in mid 1990’s
 You can store the data in the same format as you use it. No paradigm shift.
 Did not reach full potential till the classes they store were decoupled from the

database schema.
 Open source implementation available – low cost solution now exists.
 Motivation: to overcome weaknesses of relational approach:

• Richer data models.
• Closer integration with programming languages.

 Kinds of object database:
• Object relational (Oracle, DB2, PostgreSQL).
• Semantic data model (Jasmine).
• Programming language centred (Objectivity, FastObjects, Versant,

ObjectStore).

 OOBD Basics:

 A basic aim of OODB is to "raise the level of abstraction". That is, to
provide access to data via methods that hide the complexity of low level
access.

 Applications suited to OODB tend to be those that require complex SQL
queries:

 Computer-aided design and manufacturing (CAD/CAM)
 Computer-aided software engineering (CASE)
 Geographic information systems (GIS)
 Document storage and retrieval

What is Object Oriented Database? (OODB)
 A database system that incorporates all the important object-oriented

concepts
 Some additional features

o Unique Object identifiers
o Persistent object handling
 Is the coupling of Object Oriented (OOP) Programming principles

with Database Management System (DBMS) principles
o Provides access to persisted objects using the same OO-programming

language

OBJECT ORIENTED DATABASES 3

CS9152 - DATABASE TECHNOLOGY UNIT – II

Advantages of OODBS
 Designer can specify the structure of objects and their behavior (methods)
 Better interaction with object-oriented languages such as Java and C++
 Definition of complex and user-defined types
 Encapsulation of operations and user-defined methods

Object Database Vendors
 Matisse Software Inc.,
 Objectivity Inc.,
 Poet's FastObjects,
 Computer Associates,
 eXcelon Corporation
 Db4o

Database Structures

 Three primary database structures
 Hierarchical databases
 Relational databases
 Object-Oriented databases

 Each structure stores data entity instance values and represents relationships
differently

Hierarchical Databases

 Entities have parent-to-child relationship
 Uses pointers to create relationship between associated data items

OBJECT ORIENTED DATABASES 4

CS9152 - DATABASE TECHNOLOGY UNIT – II

 Pointer
 Unique address value that defines the physical location of where data

is stored on a storage device
 Links data values of the parent entity instance with multiple child

entity instances

 Problems with Hierarchical Databases
 Difficult to move to new storage medium

 Data is physically dependent on its location on the storage
media

 Changes to database structure require rewriting of programs
 Time-consuming
 Expensive

Relational Databases

Basic Concepts of RDB
 Tables

 Stores the data
 Records (like a row in a table)

 Contains data about an individual entity instance
 Fields (table columns)

 Attributes that are associated with individual data values
 Key fields

OBJECT ORIENTED DATABASES 5

CS9152 - DATABASE TECHNOLOGY UNIT – II

 Create relationship among records in different tables

Relational Databases – Key Fields

 Primary key
 Table field that uniquely identifies a record
 Cannot be NULL
 Mandatory for each table

 Surrogate key (SUK)
 Fields that did not appear automatically (VIN or SIN) but were

created by designers to be a designated primary key (e.g., student #,
customer ID)

 Unique, can be generated automatically for new records
 Foreign keys

 Create a relationship between two tables
 A primary key field in one table (parent) and acts as a foreign key in

another table (child)
 Enforces referential integrity

 When a table is created with a foreign key, all foreign key
values must exist in the parent table

 Populate the table with primary keys first!!!
 Composite keys

 A unique primary key created by combining multiple key fields in a
table

OBJECT ORIENTED DATABASES 6

CS9152 - DATABASE TECHNOLOGY UNIT – II

 Made up of foreign keys fields that are primary keys in other tables
 E.g., CustomerID and OrderID
 Always optional
 You will use them in all projects

Types of relationships

 One-to-one
 Each student has only one student #, each student # belongs to only

one student
 One-to-many

 A customer may place many orders, but each order is associated with
only one customer

 Many-to-many
 Several profs may teach the same course, the same course may be

taught by several different profs (in case of multiple sections)

OBJECT ORIENTED DATABASES 7

CS9152 - DATABASE TECHNOLOGY UNIT – II

The Hierarchies of Data Models

Object-Oriented Databases

OBJECT ORIENTED DATABASES 8

CS9152 - DATABASE TECHNOLOGY UNIT – II

 Object
 Similar to an entity
 Stores data as well as methods

 Methods - the programs that interact with the data
 Two components:

 state (value) and behavior (operations)
 Similar to program variable in programming language, except that it

will typically have a complex data structure as well as specific
operations defined by the programmer

 Object instance
 Similar to a record
 Refers to the single unique object

 Object class
 Collection of similar objects
 State - specifies its attribute values and the relationships of all object

instances within the class
 Behavior - represents the actions of its instances within the database

application

 Object identity :
Objects have unique identities that are independent of their attribute
values.

• An object retains its identity even if some or all of the values of
variables or definitions of methods change over time.
• Object identity is a stronger notion of identity than in programming
languages or data models not based on object orientation.
– Value – data value; e.g. primary key value used in relational
systems.
– Name – supplied by user; used for variables in procedures.
– Built-in – identity built into data model or programming language.

• no user-supplied identifier is required.
• Is the form of identity used in object-oriented systems

Object Structure
 The state (current value) of a complex object may be constructed from

other objects (or other values) by using certain type constructors

 Can be represented by (i,c,v)
 i is an unique id
 c is a type constructor

OBJECT ORIENTED DATABASES 9

CS9152 - DATABASE TECHNOLOGY UNIT – II

 v is the object state

 Constructors
 Basic types: atom, tuple and set
 Collection type: list, bag and array

 Complex objects:
 the value of each object can be an object or set of objects referred to

by OIDs
 eg: attribute of a person may be children, which is a set of OIDs of

other persons

 Encapsulation
 abstraction that forces a separation between the external interface and

the internal implementation
 hides unnecessary details of implementation
 allows code and data to be packaged together
 each object has methods (allowed functions/procedures)
 methods provide a visible (public) interface and a hidden (private)

implementation


 Abstract Data Types
 Class definition, provides extension to complex attribute types

 Encapsulation
 Implementation of operations and object structure hidden

 Inheritance
 Sharing of data within hierarchy scope, supports code reusability
 classes can be a subclass of another class e.g., car of vehicle, the

subclass inherits the attributes and methods of its superclass.

 Polymorphism
 An operation’s ability to be applied to different types of objects; in

such a situation, an operation name may refer to several distinct
implementations, depending on the type of objects it is applied to is
called Operator overloading

 OODBMS - Manage data objects
 Define the object classes, their associated attributes, and methods
 Write commands to create individual object instances for each data

item
 Each object has specific attribute values and relationships with other objects

OBJECT ORIENTED DATABASES 10

CS9152 - DATABASE TECHNOLOGY UNIT – II

 Advantages
 Easy to use and maintain
 Easy to store and manage sound and video clips

 Disadvantages
 Expensive and time-consuming to migrate data to object classes
 Poor performance in processing high transaction volumes

 Reasons for creation of Object Oriented Databases
 Need for more complex applications
 Need for additional data modeling features
 Increased use of object-oriented programming languages

Class Hierarchy
class person{
string name;
string address:
};
class customer isa person {
int credit-rating;
};
class employee isa person {
date start-date;
int salary;
};
class officer isa employee {
int office-number,
int expense-account-number,
};

OBJECT ORIENTED DATABASES 11

CS9152 - DATABASE TECHNOLOGY UNIT – II

Some OODBMS’s

Commercial Open Source
Fast Objects (formerly Poet) Ozone
Gemstone XL2
Versant FramerD
Ontos Zope
Objectivity/DB Academic

 - ObjectStore

Advantages and disadvantages of OODBMSs

Advantages
 Enriched Modeling Capabilities.
 Extensibility
 Removal of Impedance Mismatch
 More Expressive Query language.
 Support for schema evaluation.
 Support for long duration Ts.
 Applicability to advanced Database Apps.
 Improved performance.

Disadvantages
 Lack of Universal Data Model.
 Lack of experience.
 Lack of standards.
 Query Optimization compromises Encapsulation.
 Object Level locking may impact performance.
 Complexity
 Lack of support for views.
 Lack of support for Security.

Differences between OODB and Relational DB

OODB RDB
Uses OO data model
 - Data is a collection of objects whose
behaviour, state and relationships are
stored as a physical entity.

Uses record-oriented model
 - Data is a collection of record types
(relations), each having collection of
records or tuples stored in a file.

Language dependence (OO-Language
specific.

Language independence (via SQL)

OBJECT ORIENTED DATABASES 12

CS9152 - DATABASE TECHNOLOGY UNIT – II

No impedance mismatch in application
using OODB

Impedance mismatch in application.
Mapping must be performed.

Topic – 2: Approaches

The main four OODB approaches are:

i. Extended Relational Model Approach
ii. The Semantic Database Approach
iii. The object oriented database programming language extension approach
iv. The DBMS Generator Approach

i .Extended Relational Model Approach
� Several attempts were made towards achieving greater object orientation within
the boundaries of the Relational Model.
� This model is the first model in this direction
� POSTGRES was the first largely successful attempt in this direction with a real
implementation.
� STARBURST is a parallel approach with much greater robustness and scope but
is yet to result in a commercial product.
� INGRESS and SQL DBII (extension R*) were the predecessors of POSTGRES
and STARBURST

ii The Semantic Database Approach
� Semantic Database Models and Systems, evolved independently
as database extensions, offer semantic richness and object orientation
� Semantic models began with E-R model and became more sophisticated with
advanced models as SDM, SAM and IFO.
� Commercial implementations as SIM established a clear place for semantic
systems in the market

iii Object Oriented Database Programming language extension approach
� This approach is based on the object oriented programming paradigm evolved
originally from languages such as C++ and Smalltalk offering an object oriented
programming environment.
� An application program is developed in an environment which is basically an
extension of object oriented programming language to database environment
� The implementation of such object oriented programming language in terms of a
compiler, pre-processor and program execution environment are usually extended
and enhanced to make provision for incorporating a data management facility and
the essential and fundamental database system features.

OBJECT ORIENTED DATABASES 13

CS9152 - DATABASE TECHNOLOGY UNIT – II

� Systems available in the market are O2, Objectstore, Gbase, ONTOS, Gemstone,
ITASCA and ORION

The DBMS Generator Approach
� This approach is analogous to the system generation approach
� Application system will be generated from standard modules of toolkits available
in the module library.
� Features are specified by DBI (Database Implementer)

Categories of Semantic database models
Semantic database models
Relational Model
Extension Functional Models
Entity association models
Formal models
Object based models

Relational model extensions
� RM/T is a record based database model that incorporates a set of semantic
constructs in relational database model
� A type or a class is represented by a type relation that contains a symbolic unique
identifier for every tuple member or entity.
� Attributes of type members are represented in a separate n-ary relation that

relates every unique identifier of a member with a set of values for its properties.

Functional database models
� A functional database model views objects, properties of objects, object
classification and inter object relationship types uniformly and defines them as
functions
� Eg. Daplex, BINARY model

Entity association models
� A database is defined as a collection of entities and in terms of the relationships
among these types
� Eg.
NASEMOD
E-R Model
Event Model
SAM*

OBJECT ORIENTED DATABASES 14

CS9152 - DATABASE TECHNOLOGY UNIT – II

Object Based Model
� Employ the concepts of objects, inter object relationships and object relationships
and object associations
� Eg.
Sembase
OSAM*

Other OODB Approaches

 OOPS Extension
DB support is added to a programming language. e.g.:

 ONTOS (C++)
 ObjectStore (C++)
 GemStone (Smalltalk, Opal, C++)

 RDBMS Extension
OO support is added to a relational database, ie. Object-Relational DBMS.
e.g.:

 POSTGRES (University INGRES, QUEL)
 Starburst (IBM research)
 IRIS (OSQL, SQL)

 New OODBMS
Fully OODBMS. Only stores data in the form of objects, so does not support
tuples. Performance is optimized for fast access of objects from the server
and transparent access of objects from the client side. e.g.:

 ORION (Common LISP)
 O2 (C, CO2)

Topic – 3: Modeling and Design

Object-Oriented Data Model
No one agreed object data model. One definition:

Object-Oriented Data Model (OODM)
– Data model that captures semantics of objects supported in object-

oriented programming.

Object-Oriented Database (OODB)

OBJECT ORIENTED DATABASES 15

CS9152 - DATABASE TECHNOLOGY UNIT – II

– Persistent and sharable collection of objects defined by an ODM.

Object-Oriented DBMS (OODBMS)
– Manager of an ODB.

An OODBMS must, at a minimum, satisfy:

– It must provide database functionality.
– It must support object identity.
– It must provide encapsulation.
– It must support objects with complex state.

• OODBMS viewed as:
– OO = ADTs + Inheritance + Object identity
– OODBMS = OO + Database capabilities.

• Parsaye et al. gives:
– High-level query language with query optimization.
– Support for persistence, atomic transactions: concurrency and

recovery control.
– Support for complex object storage, indexes, and access methods.
– OODBMS = OO system + (1), (2), and (3).

Origins of the Object-Oriented Data Model

Alternative Strategies for Developing an OODBMS

OBJECT ORIENTED DATABASES 16

CS9152 - DATABASE TECHNOLOGY UNIT – II

• Extend existing object-oriented programming language.
– GemStone extended Smalltalk.

• Provide extensible OODBMS library.
– Approach taken by Ontos, Versant, and ObjectStore.

• Embed OODB language constructs in a conventional host language.
– Approach taken by O2,which has extensions for C.

Object-Oriented Database Design

Relationships
• Relationships represented using reference attributes, typically

implemented using OIDs.
• Consider how to represent following binary relationships according to

their cardinality:
– 1:1
– 1:*
– *:*.

1:1 Relationship Between Objects A and B
Add reference attribute to A and, to maintain referential integrity, reference attribute
to B.

1:* Relationship Between Objects A and B
• Add reference attribute to B and attribute containing set of references to A.

: Relationship Between Objects A and B

• Add attribute containing set of references to each object.

OBJECT ORIENTED DATABASES 17

CS9152 - DATABASE TECHNOLOGY UNIT – II

• For relational database design, would decompose *:N into two 1:*
relationships linked by intermediate entity. Can also represent this model in
an ODBMS.

Referential Integrity

Several techniques to handle referential integrity:

• Do not allow user to explicitly delete objects.
– System is responsible for “garbage collection”.

• Allow user to delete objects when they are no longer required.
– System may detect invalid references automatically and set

reference to NULL or disallow the deletion.

• Allow user to modify and delete objects and relationships when they are no
longer required.

– System automatically maintains the integrity of objects.
– Inverse attributes can be used to maintain referential integrity.

Behavioral Design
• EER approach must be supported with technique that identifies behavior of

each class.
• Involves identifying:

– public methods: visible to all users
– private methods: internal to class.

• Three types of methods:
– constructors and destructors
– access
– transform

Methods:
• Constructor - creates new instance of class.
• Destructor - deletes class instance no longer required.
• Access - returns value of one or more attributes (Get).
• Transform - changes state of class instance (Put).

.
Identifying Methods

• Several methodologies for identifying methods, typically combine following
approaches:

– Identify classes and determine methods that may be usefully provided
for each class.

OBJECT ORIENTED DATABASES 18

CS9152 - DATABASE TECHNOLOGY UNIT – II

– Decompose application in top-down fashion and determine methods
required to provide required functionality.

OOPL (Object Oriented Programming Languages)
• Basically, an OODBMS is an object database that provides DBMS

capabilities to objects that have been created using an object-oriented
programming language (OOPL).

• The basic principle is to add persistence to objects and to make objects
persistent.

• Consequently application programmers who use OODBMSs typically write
programs in a native OOPL such as Java, C++ or Smalltalk, and the language
has some kind of Persistent class, Database class, Database Interface, or
Database API that provides DBMS functionality as, effectively, an extension
of the OOPL.

• Object-oriented DBMSs, however, go much beyond simply adding
persistence to any one object-oriented programming language.

• This is because, historically, many object-oriented DBMSs were built to
serve the market for computer-aided design/computer-aided manufacturing
(CAD/CAM) applications in which features like fast navigational access,

• versions, and long transactions are extremely important.

• Object-oriented DBMSs, therefore, support advanced object-oriented
database applications with features like support for persistent objects from
more than one programming language, distribution of data, advanced
transaction models, versions, schema evolution, and dynamic generation of
new types.

Object data modeling
An object consists of three parts: structure (attribute, and relationship to other

objects like aggregation, and association), behavior (a set of operations) and
characteristic of types (generalization/serialization). An object is similar to an entity
in ER model; therefore we begin with an example to demonstrate the structure and
relationship.

OBJECT ORIENTED DATABASES 19

CS9152 - DATABASE TECHNOLOGY UNIT – II

Attributes are like the fields in a relational model. However in the Book
example we have,for attributes publishedBy and writtenBy, complex types Publisher
and Author,which are also objects. Attributes with complex objects, in RDNS, are
usually other tableslinked by keys to the employee table.

Relationships: publish and writtenBy are associations with I:N and 1:1
relationship; composed_of is an aggregation (a Book is composed of chapters). The
1:N relationship is usually realized as attributes through complex types and at the
behavioral level. For example,

OBJECT ORIENTED DATABASES 20

CS9152 - DATABASE TECHNOLOGY UNIT – II

Generalization/Serialization is the is_a relationship, which is supported in
OODB through class hierarchy. An ArtBook is a Book, therefore the ArtBook class
is a subclass of Book class. A subclass inherits all the attribute and method of its
superclass.

Message: means by which objects communicate, and it is a request from one
object to another to execute one of its methods. For example:
Publisher_object.insert (”Rose”, 123,…) i.e. request to execute the insert method on
a Publisher object)

Method: defines the behavior of an object. Methods can be used
. to change state by modifying its attribute values . to query the value of selected
attributes The method that responds to the message example is the method insert
defied in the Publisher class.

The main differences between relational database design and object oriented
database design include:

• Many-to-many relationships must be removed before entities can
be translated into relations. Many-to-many relationships can be implemented
directly in an object-oriented database.

• Operations are not represented in the relational data model.
Operations are one of the main components in an object-oriented
database.

• In the relational data model relationships are implemented by
primary and foreign keys. In the object model objects communicate through their
interfaces. The interface describes the data (attributes) and operations (methods) that
are visible to other objects.

OBJECT ORIENTED DATABASES 21

CS9152 - DATABASE TECHNOLOGY UNIT – II

Relational Design Vs O-O Design

Relational Design O-O Design
1. Identify entities/attributes 1. Identify objects/attributes
2. Resolve many-to-many relationships Identify operations on objects
3. Translate entities into relations Establish interface for each object.
4. Create primary/foreign key
relationships.

4. Implement objects.

5. Implement realtions

Topic – 4: Persistence

Persistent Object
The longest duration that an object supports the throughout the execution of
applications is called persistency of that object.

Persistent Programming Languages
• Persistent Programming languages allow objects to be created and stored in a
database, and useddirectly from a programming language
– allow data to be manipulated directly from the
programming language
• No need to go through SQL.
– No need for explicit format (type) changes
• format changes are carried out transparently by system

OBJECT ORIENTED DATABASES 22

CS9152 - DATABASE TECHNOLOGY UNIT – II

• Without a persistent programming language, format changes becomes a burden on
the programmer
– More code to be written
– More chance of bugs
- allow objects to be manipulated in-memory
• no need to explicitly load from or store to the database
– Saved code, and saved overhead of loading/storing large amounts of data

 Drawbacks of persistent programming languages
o Due to power of most programming languages, it is easy to make

programming errors that damage the database.
o Complexity of languages makes automatic high-level optimization

more difficult.
o Do not support declarative querying as well as relational databases

Persistence of Objects
• Approaches to make transient objects persistent include establishing
– Persistence by Class – declare all objects of a class to be persistent; simple but
inflexible.
– Persistence by Creation – extend the syntax for creating objects to specify that that
an object is persistent.

– Persistence by Marking – an object that is to persist beyond program
execution is marked as persistent before program termination.

– Persistence by Reachability - declare (root) persistent objects; objects are
persistent if they are referred to (directly or indirectly) from a root object.

• Easier for programmer, but more overhead for database system
• Similar to garbage collection used e.g. in Java, which also performs
reachability tests

Storage and Access of Persistent Objects
How to find objects in the database:
• Name objects (as you would name files)
– Cannot scale to large number of objects.
– Typically given only to class extents and other collections of objects, but not
objects.
• Expose object identifiers or persistent pointers to the objects
– Can be stored externally.
– All objects have object identifiers

Store collections of objects, and allow programs to iterate over the collections to
find required objects

OBJECT ORIENTED DATABASES 23

CS9152 - DATABASE TECHNOLOGY UNIT – II

– Model collections of objects as collection types
– Class extent - the collection of all objects belonging to the class; usually
maintained for all classes that can have persistent objects.

Persistent C++ Systems
� C++ language allows support for persistence to be added without changing the
language
� Declare a class called Persistent_Object with attributes and methods to support
persistence
� Overloading – ability to redefine standard function names and operators (i.e., +,
–, the pointer deference operator –>) when applied to new types
� Template classes help to build a type-safe type system supporting collections
and persistent types.
� Providing persistence without extending the C++ language is � relatively easy
to implement but more difficult to use
� Persistent C++ systems that add features to the C++ language have been built, as
also systems that avoid changing the language.

Topic – 5: Query Languages

 Declarative query language
 Not computationally complete

 Syntax based on SQL (select, from, where)
 Additional flexibility (queries with user defined operators and types)

Object Query Language (OQL)
A special type of Query structure is required to handle objects and its

manipulation in OODB and is called OQL.

Example of OQL query
The following is the simple query:

What are the names of the black product?
Select distinct p.name From products p where p.color=”black”

- Valid in both SQL and OQL, but results are different.

Result of the query (SQL)

OBJECT ORIENTED DATABASES 24

CS9152 - DATABASE TECHNOLOGY UNIT – II

Original Table
Product no Name Color

P3 Mercedes SLK Black

P2 Toyota Celica Green

P1 Ford Mustang Black

- The statement queries a relational database.
Ford Mustang => Returns a table with rows.
Result
Name
Mercedes SLK

SQL Query Vs OQL

Comparison
� Queries look very similar in SQL and OQL, sometimes they are the same.
� In fact, the results they give are very different
Query returns:

OQL SQL
Object Tuple
Collection of objects Table

OOSQL:
SQL3 “Object-oriented SQL”
• Foundation for several OO database management systems – ORACLE8, DB2, etc
• New features – “relational” & “Object oriented”
• Relational Features – new data types, new predicates, enhanced semantics,
additional security and an active database
• Object Oriented Features – support for functions and procedures

OBJECT ORIENTED DATABASES 25

CS9152 - DATABASE TECHNOLOGY UNIT – II

Basic concepts in O-O SQL:

User defined Data Types –

Creating a “row type”

Example:
create row type AddressType(
street char(50),
city char(20));
create row type StarType(
name char(30),
address AddressType);

Creating “Table”
create table Address of type AddressType;
create table MovieStar of type StarType;
Instances of Row types are tuples in tables

Sample Query
Find the names and street addresses of those MovieStars
who stay in the city “Columbus”:
select MovieStar.name,
MovieStar.address.street
from MovieStar
where MovieStar.address.city = “Columbus”;

Complex Data and Queries in O-O Query

A Water Resource Management example
 A database of state wide water projects
 Includes a library of picture slides
 Indexing according to predefined concepts – prohibitively expensive
 Type of queries

 Geographic locations
 Reservoir levels during droughts
 Recent flood conditions, etc

 Addressing these queries
 Linking this database to landmarks on a topographic map
 Examining the captions for each slide
 Implementing image-understanding programs

OBJECT ORIENTED DATABASES 26

CS9152 - DATABASE TECHNOLOGY UNIT – II

 Inspecting images and ascertaining attributes
 These type of queries necessitate dedicated “methods”

Creating Functions
create function one() returns int4
as ‘select 1 as RESULT'
language 'sql';

select one() as answer;
Answer
1

Creating “tables” with “methods”

Implementation

create table slides (
id int,
date date,
caption document,
picture CD_image,
method containsName
(name varchar)
returns boolean
as external name ‘matching’
language ‘C’);

create table landmarks(
name varchar (30),
location point);

Sample query – find a picture of a reservoir with low water
level which is in “Sacramento”
select P.id
from slides P, landmarks L
where IsLowWaterLevel (P.picture) and
P.containsName (L.name) and L.name =
“Sacramento”;

OBJECT ORIENTED DATABASES 27

CS9152 - DATABASE TECHNOLOGY UNIT – II

Topic – 6: Transaction

Basic Concepts
Data Items—collection of objects representing a database
• Granularity—size of a data item
• Concurrency—multiple users accessing a database instance at the same time
• Transaction—a logical unit of database processing that includes one or more
database access operations
– Insert, Delete, Modify, Retrieve operations
• Serializability—Interleaving execution of a set of concurrent transactions without
“giving up any correctness”

Provide Transactions that have ACID properties:
– Atomicity—a transaction is an atomic unit of work; it’s performed in its entirety or
not at all
– Consistency preservation—a transaction takes database from one consistent state
to another
– Isolation—a transaction should appear as though it is being executed in isolation
from other transactions

– Durability or permanency—the changes applied to the database by a
committed transaction must persist in the database. The changes must
not be lost because of any failure

OBJECT ORIENTED DATABASES 28

CS9152 - DATABASE TECHNOLOGY UNIT – II

Concurrency and Transaction Management:
OODBM’s vs. RDBM’s
• Both DBMS’s must deal with Concurrency and Transaction Management issues
• Many concurrency protocols can be applied to both DBMS’s
– Optimistic and Pessimistic protocols are relevant to both
• However, semantically different:
– Example: Data Item Granularity
• In traditional RDBMS, fine granularity data item would be a record field value of a
record
• In an OODBMS, fine granularity data item may be an Object or data member
(field) of an Object

Many OODB’s…Varying Frameworks
• There are many OODBM’s existing and emerging in both commercial and open
source areas
• Implementations vary differently
– Distributed database model
– Centralized database model
– “hybrid” implementation, such as Object-Relational Databases
• Use Relational DBMS Engine
• Use Structured Query Language (SQL) or an extension of it for providing access to
“Objects”
• Currently, there is no consensus or clear specification for an OODMS as there was
for a Relational DBMS (such as Codd’s original specification for a relational data
model and query language)

Topic – 7: Concurrency

Concurrency Control Protocols—set of rules for
defining the execution of concurrent transactions
(ultimately to ensure serializability)
– Optimistic Concurrency Control—validation or certification of a transaction
AFTER it executes
• If interference is detected, the transaction is aborted and restarted at a later time
Pessimistic Concurrency Control—Locks are used
to prevent conflicting transactions
• 2-Phase Locking Protocol (2PL): Best known locking
protocol for guaranteeing serializability
– Phase 1: Expanding/Growing. New locks can be acquired but none can be released
– Phase 2: Shrinking. Existing locks can be released but no new locks can be
acquired

OBJECT ORIENTED DATABASES 29

CS9152 - DATABASE TECHNOLOGY UNIT – II

» Strict 2PL—a transaction does not release any of its exclusive (write) locks until
after it commits or aborts

Database Management Systems Should…
• Provide Concurrency Control
– The DBMS should allow more than one user to
access/manipulate data concurrently
– When there is concurrency, Transaction Management must be addressed
• The Lost Update Problem—two transactions have their operations interleaved in
such a way that some database item is incorrect—inconsistent state!
• The Temporary Update (Dirty Read) Problem—One
transaction updates a database item and then the transaction fails; the updated item is
access by another transaction before it is changed back to its original value

Topic – 8: Multi Version Locks

Multiversion concurrency control (abbreviated MCC or MVCC), in the database
field of computer science, is a concurrency control method commonly used by
database management systems to provide concurrent access to the database and in
programming languages to implement transactional memory [1] .

For instance, a database will implement updates not by deleting an old piece of data
and overwriting it with a new one, but instead by marking the old data as obsolete
and adding the newer "version."

Thus there are multiple versions stored, but only one is the latest. This allows the
database to avoid overhead of filling in holes in memory or disk structures but
requires (generally) the system to periodically sweep through and delete the old,
obsolete data objects.

For a document-oriented database such as CouchDB, Riak or MarkLogic Server it
also allows the system to optimize documents by writing entire documents onto
contiguous sections of disk—when updated, the entire document can be re-written
rather than bits and pieces cut out or maintained in a linked, non-contiguous
database structure.

MVCC also provides potential "point in time" consistent views. In fact read
transactions under MVCC typically use a timestamp or transaction ID to determine
what state of the DB to read, and read these "versions" of the data.

OBJECT ORIENTED DATABASES 30

http://en.wikipedia.org/wiki/MarkLogic_Server
http://en.wikipedia.org/wiki/Riak
http://en.wikipedia.org/wiki/CouchDB
http://en.wikipedia.org/wiki/Multiversion_concurrency_control#cite_note-0%23cite_note-0
http://en.wikipedia.org/wiki/Transactional_memory
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Database

CS9152 - DATABASE TECHNOLOGY UNIT – II

This avoids managing locks for read transactions because writes can be isolated by
virtue of the old versions being maintained, rather than through a process of locks or
mutexes. Writes affect future "version" but at the transaction ID that the read is
working at, everything is guaranteed to be consistent because the writes are
occurring at a later transaction ID.

In other words, MVCC provides each user connected to the database with a
"snapshot" of the database for that person to work with. Any changes made will not
be seen by other users of the database until the transaction has been committed
MVCC uses timestamps or increasing transaction IDs to achieve transactional
consistency.

MVCC ensures a transaction never has to wait for a database object by maintaining
several versions of an object. Each version would have a write timestamp and it
would let a transaction (Ti) read the most recent version of an object which precedes
the transaction timestamp (TS(Ti)).

If a transaction (Ti) wants to write to an object, and if there is another
transaction (Tk), the timestamp of Ti must precede the timestamp of Tk (i.e., TS(Ti) <
TS(Tk)) for the object write operation to succeed. Which is to say a write cannot
complete if there are outstanding transactions with an earlier timestamp.

Every object would also have a read timestamp, and if a transaction Ti wanted to
write to object P, and the timestamp of that transaction is earlier than the object's
read timestamp (TS(Ti) < RTS(P)), the transaction Ti is aborted and restarted.

 Otherwise, Ti creates a new version of P and sets the read/write timestamps of P to
the timestamp of the transaction TS(Ti).
The obvious drawback to this system is the cost of storing multiple versions of
objects in the database. On the other hand reads are never blocked, which can be
important for workloads mostly involving reading values from the database.

MVCC is particularly adept at implementing true snapshot isolation, something
which other methods of concurrency control frequently do either incompletely or
with high performance costs.

At t1 the state of a DB could be
Time Object 1 Object 2
t1 "Hello" "Bar"
t0 "Foo" "Bar"

This indicates that the current set of this database (perhaps a key-value store
database) is Object1="Hello", Object2="Bar". Previously, Object1 was "Foo" but

OBJECT ORIENTED DATABASES 31

http://en.wikipedia.org/wiki/Snapshot_isolation
http://en.wikipedia.org/wiki/Timestamp
http://en.wikipedia.org/wiki/Isolation_(database_systems)

CS9152 - DATABASE TECHNOLOGY UNIT – II

that value has been superseded. It is not deleted because the database holds
"multiple versions" but will be deleted later.

If a long running transaction starts a read operation, it will operate at transaction "t1"
and see this state.

If there is a concurrent update (during that long-running read transaction) which
deletes Object 2 and adds Object 3 = "foo-bar" the database state will look like:

Time Object 1 Object 2 Object 3
t2 "Hello" (deleted) "Foo-Bar"
t1 "Hello" "Bar"
t0 "Foo" "Bar"

Now there is a new version as of transaction ID t2. Note, critically, that the long-
running read transaction *still has access to a coherent snapshot of the system at t1*
even though the write transaction added data as of t2, so the read transaction is able
to run in isolation from the update transaction that created the t2 values.

This is how MVCC allows isolated, ACID, reads without any locks (the write
transaction does need to use locks).

Topic – 9:Recovery
To guarantee Atomicity and Durability, Abort/Rollbacks, System Crashes

etc..
Reasons for crashes

Transaction failures: logical errors, deadlocks
System crash: power failures, operating system bugs etc
Disk failure: head crashes
We will assume STABLE STORAGE for now Data is not lost
Typically ensured through redundancy (e.g. RAID)

STEAL:
The buffer manager can steal a memory page for replacement purposes
The page might contain dirty writes
FORCE:
Before committing a transaction, force its updates to disk
Easiest option: NO STEAL, FORCE

NO STEAL, so atomicity easier to guarantee
No serious durability issues because of FORCE Issues:
How to force all updates to disk atomically ? Can use shadow copying.
A page might contain updates of two transactions ? Can use page level locking etc.

OBJECT ORIENTED DATABASES 32

CS9152 - DATABASE TECHNOLOGY UNIT – II

Desired option: STEAL, NO FORCE
STEAL:
Dirty data might be written on disk
Need to use UNDO logs so we can rollback that action
The UNDO log records must be on disk before the page can be written (Write-
Ahead Logging)
NO FORCE:
Data from committed transaction might not make it to disk
Use REDO logs
The REDO log records must make it disk before the transaction is “committed”

Simple Log-based Recovery:

Each action generates a log record (before/after copies)
Write Ahead Logging: Log records make it to disk before corresponding data page
Strict Two-Phase Locking
 Locks held till the end
 Once a lock is released, not possible to undo

Normal Processing: UNDO (rollback)
 Go backwards in the log, and restore the updates
 Locks are already there, so not a problem

Normal Processing: Checkpoints
 Halt the processing
 Dump dirty pages to disk
 Log: (checkpoint list-of-active-transactions)

Database Recovery and Security

Motivation and Assumptions
• Types of Failures and Recovery Manager
• Transaction Logging and Checkpointing
• Recovery Strategies
• Introduction to Database Security
• Discretionary and Mandatory Access Control
• Statistical database Security

Recovery and ACID properties

Atomicity: All actions in the transaction happen, or none happen.

OBJECT ORIENTED DATABASES 33

CS9152 - DATABASE TECHNOLOGY UNIT – II

Consistency: If each transaction is consistent, and the DB starts consistent, it ends
up consistent.

Isolation: Execution of one transaction is isolated from that of other transactions.

Durability: IF a transaction commits, its effects persist.
The recovery manager is responsible for ensuring two important properties of
transactions: Atomicity and Durability
Atomicity is guaranteed by making sure that all actions of committed transactions
survive crashes and failures.

C & I: Concurrency control; A & D: Recovery mechanisms.

OBJECT ORIENTED DATABASES 34

CS9152 - DATABASE TECHNOLOGY UNIT – II

Sample Questions

Topic – 1:

1. What is Object Oriented Database? (OODB) (2M)
2. What are the advantages of OODBS? (2M)
3. List any four object Database Vendors. (2M)
4. What are Database Structures? (2M)
5. Explain in detail about Hierarchical Databases. Give example. (8M)
6. Explain in detail about Relational Databases. Give example. (8M)
7. Explain in detail about Object-Oriented Databases Give example.(8M)
8. What is an Object ? (2M)
9. Define Object instance (2M)
10. What is Object class ? (2M)
11. Explain briefly on Object identity (2M)
12. What are Object Structures? (2M)
13. Explain the following O-O concepts briefly: (16M)

Abstract Data Types
Encapsulation
Inheritance
Polymorphism

14. Explain briefly on Class Hierarchy. (8M)
15. List Some of the OODBMS’s. (2M)
16. What are the Advantages and disadvantages of OODBMSs? (8M)
17. Differences between OODB and Relational DB. (8M)

Topic – 2:
1. What is the need of OODB approaches? (2M)
2. Explain in detail on main four approaches of OODB. (16M)

Topic – 3:
1. Explain briefly on Object-Oriented Data Model. (8M)
2. Discuss about the Origins of the Object-Oriented Data Model. (8M)
3. List the Alternative Strategies for Developing an OODBMS (2M)
4. Explain in detail about Object-Oriented Database Design. (16M)
5. What are Relationships? (2M)
6. What is Referential Integrity? Explain briefly with an example. (8M)
7. What are the Several techniques to handle referential integrity (4M)
8. How a Behavioral Design for OODB is achieved. ? Explain concepts

associated with it. (8M)
9. Explain briefly on Object data modeling. (8M)
10. Differentiate between Relational Design and O-O Design (4M)

OBJECT ORIENTED DATABASES 35

CS9152 - DATABASE TECHNOLOGY UNIT – II

Topic – 4:
1. What are Persistent Object ? How they are useful in OODB Modeling and

design? (8M)
2. Describe briefly on Persistent Programming Languages. (8M)
3. List out the drawbacks of persistent programming languages. (2M)
4. How Storage and Access of Persistent Objects is useful for OODB

design? Explain. (8M)
5. How Persistent C++ Systems are helpful in OODB design and

implementations.? Explain (8M)

Topic – 5:

1. What are Object Query Language (OQL)? (2M)
2. What are the major differences between SQL Query and OQL? (2M)
3. Explain briefly on OOSQL and its basic concepts. (8M)
4. Explain Complex Data and Queries in O-O Query (8M)

Topic – 6:
1. What is Transaction ? Explain with an example. (2M)
2. Explain that Provide Transactions that have ACID properties. (8M)
3. What are the basic concepts in Transactions. (4M)
4. Explain briefly on Concurrency and Transaction Management (4M)
5. Compare and contrast between OODBM’s and RDBM’s. (4M)
6. Discuss how Many OODB’s are having Varying Frameworks. (8M)

Topic – 7:
1. What is concurrency? (2M)
2. Explain briefly on Concurrency Control Protocols (4M)
3. What are the mechanisms needed Database Management Systems with

respect to concurrency? (8M)

Topic – 8:
1. What are multivesrion locks? (2M)
2. Explain in details on Multiversion Locks. Give examples. (16M)

Topic – 9:
1. What is recovery? How it differs from failure? (2M)
2. List the different types of Failures. (2M).
3. List the reasons for crashes. (2M)
4. Explain in detail on Simple Log-based Recovery. (8M)
5. Explain on Recovery and ACID properties related to Recovery. (8M)

University Questions

OBJECT ORIENTED DATABASES 36

CS9152 - DATABASE TECHNOLOGY UNIT – II

1. Explain the need for object oriented database. (2M)
2. What are the various approaches of persistence of objects? (2M)
3. How does the concept of an object in the object oriented model differ

from the concept of an entity in the entity-relationship model? (8M)
4. Explain the concept of multi-version locks in object oriented databases.

(8M)
5. Explain recovery techniques based on immediate update (8M).
6. Explain in detail ACID properties of transactions. (16M)

*************************** End of Unit – II ************************

OBJECT ORIENTED DATABASES 37

