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Comparison of different TAC implementations is given in table 6.4,
Table 6.4: Comparison of TAC

as well as programmer
defined) have immediate
access through symbol
table. -

allocate memory. for
cvery variable whether

temporary or

programmer defined,
the indirection does not
help much.

Paramcter Quadruples Triples Indirect triples
Indirection No indirection is present. | Indirection is present. Indirection
) All variables (temporary However, since we present.

Suitability to

The quadruples lend well

The triples are not

The indirect

storage is not optimum
because of the additional
result field.

than the quadruple

optimization to optimization. When the | suited to optimization. triple lends well
statements need to be When the statements to optimization.
rearranged for need to be rearranged When statements
optimization, we have to for optimization, we need to be
move the quads. For have to move the rearranged for
moving a quad, there is no | triples. If we move a , optimization, we
extra dependence on other | triple all the references merely have to
quads. (In the form of reorder the
’ parenthesized numbers) | statement list.
in argl and arg2 arrays The references
also have to updated do not change.
accordingly. This is a
time consuming
operation making it less
. compile time efficient.
Space The space required for Requires less space More space is

needed when
compared to
triples. But, it

can save some’
space when
compared to
quadruples
because the
statement list can
point to the same -
triple fora
temporary value,
in case it is used
more than once.

6.4 Translation into Intermediate Forms .
Syntax Directed Translation (SDT) is the name given to the process of translating the
input source to intermediate code based on the syntax of the language. Tlucs: lcll‘)(r:'c>f<3e53 ni.
initialized during syntax analysis phase itself. For example cox?smer th.e F +qr+af“
signment statements given below. The parse tree generated for the input string "I=p¥qT,

is given in Fig 6.5.
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Fig 6.5: PTfor i =p+q+r;

The intermediate code cannot be generated directly from the Parse Tree (PT)
shown in Fig. 6.5. The nodes have to be populated with more information. This pro-
cess is called decorating the parse tree. Attribute grammars are a method to deco-
rate or annotate the parse trec. For example, consider an identifier, the place and
type of id, known as its attributes, can be added to the Parse Tree (PT). For ex-
ample, for the identifier ' node 1, its place value is 'i'. For an 'E' node, the place value
is the place (variable name) where the evaluation of the expression is placed. For
example for 'E' at node '5' the value of expression evaluated is stored in the same
node 'S' (ie) 'p".  Another attribute is code generated. It is the intermediate code
generated from the bottom till that point includin g that particular reduction. TAC is
used for code generation. So for 'E' node § the reduction is E — T, which is a null
code. Now consider 'E' node 6. Here a temporary variable 't0' is to be_created to holc61
?ﬁi,}’f)’l_“i of expression 'p+q' . Hence its place is 't0'. The code attribute of ngdcl:f

118 10=p*q" due to reduction (E — E+T). Similarly the place value and code for

Pfde T EFD)is 't and "t0=p+q; t1=t0+r;" Hence the decorated parse tree for input
=ptqtr'is given in fig 6.6.

art alll:lzhe reduction of T to E using E- T, there is no need to cre.ate anew tceint}r;g::trT):
ode, Th:Ss Place for 'E' node, as there is no additional computation requg‘;s Eplace
= Tplace éme Place as 'T" node can store place for 'E' node .t is expresse réry e
has to be. onsider the production E-s E] +T| E1 - T, here anew tempOE e =
NewTer, created to hold resylt value for E node. It is represented 5 '}Fi’;]guish
p(). It returns the unused temporary variable like t0, t1, t2 etc. To distingtis

e | : sented
exi);f:;mln nodes on RHS & LHS, the expression node on RHS lst;ipglation-

ol ||'; : |
shlp betWeen he I'is used for concatenation. Rules are added to show gyl alled

the semang;, rul HS and RHS of the grammar rules. Such relationshiP: with the

Semantjc ry) Siu ®. The CFG in which the productions are shown alo?fx directed

"anslation o g . <0 38 the Syntax Directed Definition (SDD). The o
assignment Statement described previously is given b°
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SL
code:t0=p+q;
t1=t0+r:

I=t1

S

place :t1

code:t0=p+q:
t1=t0+r:

. i=t1
E
1d _ ‘ - place :t1
place =t1 code:t0=p+q;
{1=10+r:

E \\

place : t0 T

code :t0=p+q place :'r’
/ \
E| + |7 F
place!’p : place:'q’ place :'r'
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T place :'q'
place :'p' - & Id

| Place :'r’

F Id '

place -p' place :'q'

Fig 6.6 Decorated PT for 1=p+q+r

SNO Production Semantic Rule

L SL-> SL S . SL.code = SL1.code || S.code
| S SL.code = S.code

2. 1'S=>id=E  ~ S.place = id.place

| s.code = E.code || S.place := E.place
3. E - E+T E.place = NewTemp() '
E.code = El.code

|| T.code
|| E.place = El .place+T.place

|E-T E.place = NewTemp()
E.code = El.code

|| T.code
|| E.place = El place - T.place

|'T E.place = T.place
E.code = T.code
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> TF . T.place = NewTemp()
T | T.code = Tl.code
|| F.code |
| T.place =TI .place*F.place

Y

| T'F
- T.place = NewTemp()
T.code = Tl.code
| F.code » .
| T.place =TI place / F.placg

| F T.place=F.place
T.code=F.code |

5. F-> (E)b F.place=E.place
F.code=E.code

| id F.place=id.place
F.code=""

F.place = NewTemp()

- constant
F.code = F.place= constant.valug

If the addition of the parent node (LHS) depends on attributes of its children
(RHS) such attributes are synthesized attributes. F or'example 'F' node havingsyn-
thesized attribute as its value is synthesized from id's place node. Similarly as the code
attribute of T is synthesized from code attributes of T and F (in production T — T*F |
T/F) it is a synthesized attribute. Syntax directed translation that uses only synthesized
attributes is called an S-attributed definition. The statement list CFG 'generates an
S-attributed definition.

S-attributed deﬁ.ni'tion: It is a syntax-directed detinition that uses synthesized at-
tributes only. |

A parse tree can be represented using a directed graph. A post-order traversal of the
parse tree can properly evaluate grammars with S-attributed definitions in a bottom up
fashion. |

If the attributes of the child depends on the attribute of parent node, then such an
.attribute is called Inherited attribute.

L-attributed definition is an attributed definition in which;

* Eachattribute in each semantic rule for the production A - X1...... Xuis
either a synthesized attribute or an inherited attribute Xj which depends only
on the inherited attribute of A and/or the attributes of X1; ........ ;X1 |

. Independent of the evaluation order.
e Every S-attributed definition is an L-attributed definition,

- For example, consider the syntax directed translation for variable declarations as
atven below: ,

................................................................................................................................... hned by CamScanner
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SNO | Production Semantic Rules
1, decl list - decl_list decl
_2 | decl _
3. decl  -> dtypeid_list id list.type =dtype.category
4. dtype > INT dtype.category = INT
5. | CHAR dtype.category = CHAR
6¢ | FLOAT dtype.category = FLOAT
7. id_list - id_list, ID id_listl.type =id_list.type
B add_to_symboltable(ID.place,id_list.type)
N D add to_symbol table(ID.place,id.list.ty pe)

Consider the semantic rule for production 3, the attribute type for id_list depends on its
child (dtype's) category. Similarly id type of'id_listl in rule 7 is derived from its par-
ent. Such attributes are called inherited attributes. Consider an input string 'int a, b;'.
%ts parse tree is shown in figure 6.7a' The decorated parse tree for the same is shown
In fig 6.7 b.The attributes are category for dtype node, type for id_list, and place for id

DCCl_liSt Decl list
Decl
decl
Dtype ‘Id_list : | dtype 5| id_list
- dtype.category=INT id_li_st.typc | ;
|
Int . ' r'-——-"_//"‘" l
. | T
| . .
- .’ ol 1d_list
1d_list Id id_list.type=INT , id
b id.place=b
Id id
a id.place=a

Fig 6.7a: PT forinput”inta,b;" Fig 6.7b : Decorated PT with dependency

As shown in Fig 6.7b dtype category attribute depends on id_lists type, which
depends-on id's type. Such a graph is called as dependency graph. The topological

- sort of this graph gives the order in which the attributes associated with the nodes in
the parse tree are to be evaluated.

DT i S A 7 TR TR0 A 1 T 1 0 20, £ A m 7 s

For.more studi/wrkhéieri als>www.ktustuden
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Example 6.6: Draw the annotated parse tree for the following parse tree:

Expr
Expr B-op Expr '
var Expr B-op Expr
A var * Var
A.lexval=4 l l
B C
B.lexval=3 C.lexval=5
The annotated parse tree for the same is given below.
Expr.Val=19{ = Expr
%\ —
Expr.Val=4 | Expr B-op Expr Xpr
l i / NE
Var.val=4 var Xpr B-op Xpr
— | Expr.Val=3 l l Expr.Val=5
A var ot Var
A.lexval=4 Var.val=3
' | l Var,val=5
N C
B.lexval=3 C.lexval=5

Example 6.7: Write down the syntax directed translation for the following CFG.

L->E

E>El+T :

E—>T

T TI*F : | _

T—>F . '

- F-(E) | : -

F - digit |

The SDD is given below:

Production Semantic rules _

L—>E | print(E.val) :
E—->EI+T : E.val=El.val + T.val

E->T E.val = T.val

T TI*F T.val =Tl.val *_F.vai

-ﬁned by CamScanner
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T—F T.val = F.val
F — (E) F.val=E.val
F — digit Fval =digit.lexval

Example 6.8: Write the SDD for the following grammar
E-E+E
E->E*E ‘
E—(E) it
E -l :
1 -1 Digit |
[ > Digit .

Also show the actions of the LR parser.

The SDD is given below:.
S— E$ { Print E.VAL }

E-> E(1)+ EQ2) {EVAL:=E(1).VAL+ E(2).VAL}
EE(1)* EQ2) {E.VAL:=E(]) VAL" E(2).VAL }

E— E(1) - { E.VAL := E(1) .VAL }
E—> I { EVAL :=1.VAL }
[-I(1) Digit ~ {LVAL:=I(1).VAL* 10+ LEXVAL }
I Digit { LVAL := LEXVAL } -
The actions of the LR parser are shown below for the input string 123 *:5.
S.NO | INPUT STATE VALUE PRODUCTION
_ ' USED .
1 123*5$ - - ;
2 23*5$ 1 I ‘ 1 > digit
3 3*58 [ 112 [ > 1*10+digit
4 *58 1 123 [ > 1*10+digit
5 58 E. (123) |E=1
6 $ E* (123) '
7 s E*I (123) 5 1> digit
8 s E*E - (123)_(5) E> I
19 $ E 615 E = E*E :
| 10 $ S —[PRINT 615 | S ES _

Example 6.9: Are the attributes in the CFG given below synthesized or inherited?

Give reasons.
var — IntConstant

{ $0.val = §1.lexval; }
Expr — Var

{ $0.val=$1.val; }
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Expr — Expr B-op Expr .
’ { $0.val + $2. val ($1.val, $3.vz‘11), }

B-op > + . -

{ $0.val = PLUS; }
B-op — *

ot s ' directed definition. The LHS
Consider the flow of the attributes in the 'Expr syn.tax- e e is purcly bottom up.
attribute is computed using the RHS attributes. This pr  puted and then used to
Attribute values of all children (RHS) in the parse tree 1s ch R e ateibirton are Sy
com pute the attribute value of the parent on the LHS.T g ¢l 8 gramiarplus so.
thesized attributes as it is computed purely bf)ttom—UP. u
mantic actions is called an S-attributed definition

_ _ | . inherited?
Example 6.10: Are the attributes in the followin g grammar synthiesized or inheri
Give reasons.

Var-decl — Type Id-comma-list ;
Type — int | bool
Id-comma-list — 1D
Id-comma-list — 1D, Id-comma-list
A Coﬁsider an example input string.intx, y, z ;

The parse tree and annotated parse tree for the input string are given below:

) Vai’-dcel
Type : Id-Comma-List : Typ"/}omina-u t |
T F ) N
" Int D ’ Id-_-Comma-LiSt Int ID /Id$ Li l .
/ 4 - ma-List I-C-L.in=int
X __.4'\ -m X il
ID .+ Id-Comma-List T\

' l -'Id-Comma-Lisl I-C-L.in=int
: ID , -" E!I Y | |

The syntax directed translation scheme for the g

Var-dec] - Type Id-comma-ljst ;
{3$2.in=§1.val, }
Type — int | bool

{ $0.Val = iﬂt; } & { $0:val = bOOl; }

e, R v -

ned by CamScanner
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Id-comma-list — ID
{ $1.val =$0.in; }
Id-comma-list — ID , ld-comma-list
{$1.val =$0.in; $3.in= $0.in; }

Here, ID takes its attribute y
attribute value from its |eft sibling
sufficient in this case, Hence
attributes that are computed a
Typically, synthesized attriby
itis possible to convert the gr
A syntax-directed definition
two conditions hold:

i.  Each inherited attribute of X depends on X ..X ir

J

ii. EBach inherited attribute of X depends on A

)
These two conditions ensure left to right and de

S-attributed definition is L-attributed.

Example 6.11: Are the following SDDs, inherited o s
a. E5E +E - {E:VAL=E.VAL+E.VAL}
'b. ASXYZ {Y.VAL=2*A.VAL}

alue from its parent node. Id-comma-list takfas its
type. Computing attributes purely bottom-up is not
inherited attributes are used. Inherited attributes are
tanode based on attributes from siblings or the parent.
tes and inherited attributes are combined. In such a case,
ammar into a form that only uses synthesized attributes.

is L-attributed if fora CFG rule of the form A—)X,..in-IXj..Xn

pth first parse tree construction. Every

ynthesized?

Ans: .
" "a. EoE +E {E.-VAL=E.VAL+E.VALY} is synthesized
b. AXYZ {Y.VAL=2*AVAL} is inherited.
- Example 6.12: Remove the inherited attributes in the declaration example (example
6.10)
Var-deel
Type-list ~ p ;
Type-list | ID '
Type-list ID '
l Int X,Y,Z;
Type
I
Int

T Eormore sty marerial sswww. ktustu dent§

................................................................................................................................... Cié}]nEd by CamSCanner
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Var-dect.val=int

Var-deeli

Type-list.val=int| Type-list ID

Type-list.val=int el N

ype-list ID

Type-list.val=int
' Type-list ID .
l |
nt Z:
Type X.Y.Z;
l

Int

The syntax directed translation is given below:

Var-decl - Type-listID ;
{ $0.val = §1.val; }
Type-list &> Type-list ID
{ $0.val=§1l.val; }
Type-list - Type
{ $0.val =$1. val; }

Type — int| bool
{ $0.val = int; } & { $0.val =bool; }
The translation scheme is a CFG, where each rule is associated with a semantic

attribute.

Example 6.13: Convert the following SDD into SDD with synthesized

translations:
E—> TR
R — +T { print (‘+’); } R
R—-T{print(‘’);}R
R—e
T — id { print( id.lookup ); }-
For this purpose, non marker terminals N and M are used as follows:
E - TR
R —» +TMR
R — -TNR
R—e
T — id { Print( id.lookup ); }
M — ¢ { Print( ‘+’); }
N-—> ¢ { Print(‘-"); }
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he translation o t é,parsc tree 1nto intermediate torm 1s based ont e syntax
input language and is often referred to as Syntax Directed Translation °

the 1

" The front end of most of the compilers translates the input source into one of the

following intermediate forms as explained below:

1. Postfix Notation
2. Abstract Syntax Tree

| 3. Three Address Code

The creation of DAG is identical to the AST except for the extra check to determine
whether a node with identical properties already exists. In the event of the node
already created, we merely chain the existing node avoiding a duplicate node
The DAG is optimal on space as compared to the AST. -

There are 3 common implementations for the TAC statements in a compiler
They are: '
1. Quadruples

2. Triples

3. Indirect Triples

The intermediate code cannot be gener.ated directly from the Parse Tree (PT).
The nodes have to be populated with more information. This process is called

. decorating the parse tree. Attribute grammars area method to decorate or annotate

the parse tree

There are two types of attributes. They are: .

1. _If the addition of the parent node (LHS) depends on attributes of its children
(RHS), such attributes are synthesized attributes.

2. Ifthe aYtribu‘tes of the child depends on the attribute of parent node, then such
an attribute is called Inherited attribute.

There are four methods of translating the input sourc
1.

. Bottom up translation: In this method the semant

6.5 Methods of Translation into intermediate forms

e into intermediate code. They are

Parse t'ree method: In this method the parse tree generated during syntax analysis
phase is used to create the dependency graph. The value of each attribute in

- dependency graph is evaluated. This evaluation yields the intermediate code.
ic rules are evaluated and

used to generate the intermediate code when the production is reduced. It can be

applied easily to S-attributed grammars.

Top-down translation: Here, the semantic rule
ate code is generated when the production is eXp
parse tree dependency graphs can be overcome I
Recursive evaluator model: In this method, the parse {re

is evaluated and the intermedi-
anded. The overload of creating

n this method.
e 1S constructed. Then



http://www.ktustudents.in/
http://www.ktustudents.in

6.26 CompﬂerD.esign
ted in 2 particular order. This

alua : :
ules are ev pensive as ithas to

it is traversed and the semantic r ot
s of grammars, bu

method can be used for a wide clas
build the PT and then traverse it.

These methods are explained in the following sectl

itisex

ons

6.5.1 Parsc tree method:

In this method, the translation of source code to interme
They are:
1. Conversion of input source program into

in the parsing phase itself. For example, consi B
for assignment statement in section 6.4. The parse tree 10

diate code occurs in 3 steps.

parse tree: This process is done
der the syntax directed translation
r the input "i= j+k" is

given in Fig 6.8.
Id “9”
3

4% |13

Fig 6.8 PTforinput"i=j+k"
The rules for creation of parse tree are given below. Consider a production P—ABC

1. Create a node P |
5 Make the nodes A, B, C as ch'ildren to P from left to right. This process is carried
out by performing the following steps (a to c): |

The PT is traversed using depth first traversal method as given below :

cahned by CamSEénﬁer

Tt T S

WAy e = ety P\ T SRR A Vot e 2
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Procedure dfvisit (node n)

{
rocess the node ( )/ .
If:.«:sz: each of the child m of n from left to right
{
dfvisit (m);
}
}

Using this method, the parse tree given in fig 6.8 is evaluated as shown by the num-
bering of the nodes in Fig 6.8

b. Creation of depgnding graph: The aim of drawing the dependency graph is to
identify the dependency of

the attributes of the node of the parse tree on one another.
For example

The statement node (S) has attribute .

S.code = E.code || S.place =E. place
Expression (E) node has attribute E.code and E.place.
Consider the statement portion of syntax directed translation
S—>'id = E ;  S.place = id.place

S.code = E.code || S.place = E.place
From this we can see that

- & 8. code in node 2 depends on E.code (at nodes5 )
* S.code in node 2 depends on S.place (at node 2)
* S.code in node 2 depends on E.place in node 5
Hence dependency graph for node 2 15 given below

S.code for S.place for
node 2 of PT node 2 of PT
E.place for E.code for

node 5 of PT -node 5 of PT

The creation of the dependency graph is a 2 step process as given below :

i.  Creation of dependency graph node for each of the attributes cofresponding to
each of the parse tree node

ii. Creation of edges from one dependency graph node 'a' to another graph node 'b,
if 'b' depends on 'a'. ~

Then the topological sort of the directed acyclic graph is performed. In this order-_
ing, if an edge occurs from mi to mj , then the topological sort will have node mi ahead
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of mj. For example for the dependency graph shown in Fig 6.8 the topological sort is
in the order shown by the numbering of the node (ie) 1, 2, 3, 4. '

The dependency graph identifies the dependency of the attributcs of the node
of the parse tree on one another. _

The topological sort of the depehdency graph tells us which noae comes ahead
of another node. .

c. Evaluation of attribute using the dependency graph: The order of evalua-
tion of attribute is obtained from a topological sort of the dependency graph. The
evaluation of attributes yields the intermediate code. The value for each of the at-

tribute represented by a node in the dependency graph is computed using the related
semantic rule. If the dependency graph (Fig 6.9) is drawn and topological sort is done,
S.code for id.place for

the result of traveling it is "i = j+k"
S.ptace for <«
node 2 of PT node 2 of PT node 3 of PT

TN

E.code for <« E.place for

node 5 of PT node 5 of PT
x A
E.code for E.place for
node 6 of PT node 6 of PT
- T.code for T.place for )
nodell of PT node 11 of PT [«
F.code for _
node 12 of PT F.place for
T.code for T.place for node 12 of PT
node 7 of PT node 7 of PT T
id.place for
F.code for F.place for node 13 of PT
node 8 of PT node 8 of PT (k)
id.place for
node 9 of PT
§)

Fig 6.9: Dependency graph

A
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algorithm for DFS evaluates the attributes as given below:
e procedure dfvisit (node *n ) ,

{ .
for each of the child m of n from left to right

( X '
evaluate inherited attribute of m
dfvisit (m);

} .
/* when all children of node N are processedt*/
evaluate synthesized attribute of node n

}
Consider the production A—>x1, x2,

....... xn Depth First evaluation method is as fol-
lows:

1. Theinherited attribute of node xj depends on attribute of x1, x2, ... xj-1 but not on
its siblings like xj+1....xn (as xj+1....xn should be evaluated only after Xj).

2. Theuninherited attributes of any particular node xj can depend on A, as A would
have been evaluated before xj.

For example consider SDD given in table for declarations in section 6.3. Here,
Id list.type = dtype.category is 'L’ attribute.
But dtype is on RHS of id_list. Then the SDD is not L-attribute grammar as it
violates rule2.

A translation scheme is the notation that helps us to represent the code frag-
ments associated with each reduction. A translation scheme is thus a CFG in which

the attributes are associated with the grammar symbols and semantic action enclosed
between braces is given to right of the production. -

Forexample consider the translation scheme given below:
S — {B.attr 1 =100} B {C. attr 1 =200} C
B — b {B.attr 2=f (b.val ,B.attr 1)}
C — ¢ (Cuattr2=g(c.val, C.attrl)

The parse tree for the translation scheme is given below (Fig 6.10), along with the DF
traversal of the tree shown by dotted lines

Battrl =100 B | | Cattrl =200 C
LY L)
“ »

b B.attr2 =F(b.val, B.attr1) c C.attr2 = g(c.val,C.attrl)

Fig6.10 Semantic action in parse tree
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es as shown Fig 6.10.

The semantic actions are connected by dotted lin
The rules for L attribute definition are given below:

) . oduction is an action
1. *An uninherited attribute for a symbol on right side of the pr

before that action. .
' : i to the right of th
2. Anaction must not refer to a synthesized attribute of a symbol g e
action.
¢ left is computed only after all-

3. A synthesized attribute for the non-terminal a
attributes it references have been computed. T' :
tributes can usually be placed at the end of the ri ght si

For example, consider the following SDD

he action of computing such at-
de production.

Production Semantic Rules
S—A A attr 1=100
S.attr 1=f1(A.attrl,A.attr2)
B.attr1=A attrl
A-BC C.attrl=A.attrl
A.attr2=f2(B.attr2,C.attr2)
Bsb | B.attr2=g(b.val,B.attr])
C—oc¢c C.attr2=h(c.val,C.attr1)
The translation scheme given below:
LS - { (Aattr 1=100) A (S.attr=f1 (A.attrl, A.attr2) }
2. A — { (B.attrl=A.attr]) B (C.attrl=A.attr1) C

(A.attr2=f(B.attr2,C.attr2) )
3. B - b {B.attr2 = g (b.val, B.attr])}
4. C - ¢ { Cattr2 =h (c.val, C.attrl) }
In production 1, attr] of A is uninherited ; while S attr] s s i
- - . - ’ ) t -
tion 2, attr] is uninherited for B and C while attr2 of A ig synth};zigzzlz;ﬁ::tfr?g?;

and C are also synthesized. The DF traversal of the pa : -
i . e rse tr
evaluation of attributes is given below P ©¢ with order of the

-
-
v -
-

-
-
-
Pld -

-~ -
-
- -
- n.‘

A.attr] =100 <1 B kel [SArl =1 (A ar Aattr2)

1 ‘-',-"' / :: | “'.v.-n-,_..“ 7
27 { h""-
B.attr] =A.attr] B C.attr] =A.attr| C »
2 / 4 7 L2202 = DB a2 Catt2)
' “\ 6 . ‘
i ‘\ .

b B.attr2 =g(b.val,B.attr1) _
S c Cattr2 =h(c.val,c.aterq )

5
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present the code fragments associate
‘< 2 CFG in which the attributes are
semantic action enclosed between

A‘translation scheme 1s the notation to re
with each reduction. A translation scheme i
associated with the grammar symbols and
braces is given to right of the production

6.5.2 Bottom up translation

This method is used during bottom up parsing in LR parsers. LR parsers use stack
while scanning input. In order to facilitate the evaluation of semantic rules and trans-
lation of input source, an additional stack containing the values of attributes of symbols
involved in reduction is used. Such a stack is called VAL stack. The 'shift' action
pushes an attribute of input grammar symbol on VAL stack. The reduce action pops
out as many elements as present in RHS of the production and pushes an attribute of
LHS of the production on the VAL stack. If a symbol has no attribute, then the value
pushed onto stack is undefined. '

For example, consider the production A — BCD, the contents of VAL stack are given
below.

TOS D.val
C.val
B.val

Bottom-up translation of S-attributed definitions is explained in this paragraph. For
assignment statements, the translation scheme is shown below. The emit statement in
the translation scheme emits the intermediate code as and when reduction happens.

1. SL — SL
| S

7. § —id=E {emit(id.place:=E.place)}

3. E —EB+T { E.place= NewTemp()
emit(E.place = El.place + T.place)}
| E-T { E.place= NewTemp()
emijt(E.place = El.place - T.place)}
| T { E.place = T.place}
place= NewTem
T = T inrit‘z}?.place = Tl.plzc(:za * F.place)}

| T/F {'T.placé‘—' NewTemp()
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emit(T.place = T1 .place / F.place)}

|F { T.place= F.place)
5. F - (B) { F.place=E.place }
| ID { F.place=ID.place }
| CONST { F.place= NewTemp()

emit(F.place=CONST.val) }

Bottom-up translation method is used during bottom up parsing in LR parsers. LR
parsers use stack while scanning input. In order to facilitate the evaluatio;l of
semantic rules and translation of input source, an additional stack containing the
values of attributes of symbols involved in reduction is used. Such a stack j

called VAL stack.

VAL stack

STATE inpu | Operation
stack t
$0 $ { 1=+ | Shift
. kS | .
$01 $1D.place=i =j+ | Shift
ki$
$014 $ID.place,undefined j+k; | Shift
$
$01438 $ID.place,undefined,ID.place=j +k;$ | Reduce
' F->id
$01410 | $ID.place,undefined,ID.place=j,F.place=j +k;$ ?cf)u;c
$01411 $ID.place,undefined,ID.place=j,F.place=j; T.place =j; +k;$ g&’:gu_lﬁe
$0149 $ID.place,undefined,ID.place=jF.place=j, - T.place = j; | +ik; | Shift
E.place=j |3 .
$0 1 4 9| $ID.place,undefined,ID.place=j,F.place=j, T.place = ji| k;$ Shift
13 E.place=j,undefined :
$0 1 4 9| $ID.place,undcfined,ID.place=j,F place=j, T.place = Jj | ;3 R'f‘)“[j;
138 E.place=jundefined,ID.place=k F
$0 1 4 9| $ID.place,undefined,ID.place=j,F.place=j, T.place = |8 T>F
1310 E.place=j, undefined, ID.place=k, F.place=k ' : Reduce
$0 1 4 9| $ID.place,undecfined,ID.place=j,F.place=j, T.place = b 3 E= E+T
13 19 E.place=j, undefined, ID.place=k, F.place=k, T.place=k _ Sh{ﬁ T3
$0149 $ID.place,undefined,ID.place=j,F.place=j, T.place = J $
E.place=j, undefined, ID.place=k, F.place=k, T.place=k,
E.place=j+k
emit (10 = j+ k) ; —Theduce |
$01915 | $ID.place,undefined,ID.place=j,F.place=j, 3 gef)uc:j =
E.place=j,undefined,ID.placc=k,F.place=K, T.place=k, E:
E.place=j+k, E.place=j+k ; ]
$0 $ID.place,undefined,ID.place=j,F.place=j, $
E.place=jundefined,ID.place=k,F.place=k, T.place=k,
E.place=j+k, E.place=j+k,
S.place=i = j+k, undefined
emit (i =t0) et 1
$0 completed 5| o
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Emitted intermediate cO
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are given in the tab

t0=+k;

i=t0; -
For L—attributed definitio

to modify sO thatt
‘grammar is restruc

format as shown below:

hey occur atthee
tured. Consider t
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LR parser in the STATE stack along with conte

. contents of
le . SLR parse tablé for expression in chapter 5 (ex‘;m\’?eLss;ac'k
dered for state changes . ple 5.9) is
de is given below:

n, the semantic actions between the non-terminals shift
nd. For thls2 extra € productions are added and the
he translation scheme to convert infix to postfix

E T El
El>+T {print'+'} El
| -T {print '} EIl
| €
T — CONST {print CONST.val}
This scheme is restructured to include semantic actions in the end as follows
E »TEl |
El->+T M1 El
| -T M1 El
| €

T — CONST {print(CONST.val)}
M1—> € {print "'}

M2— ¢ {print -}
Now the code is generat
6.5.3 Top down translation method

It ?s I-Jsed along with top down parser.
eliminating left recursion, the SDD fo

ed using bottom up method as already illustra

ted.

uld be removed. After

Hence, left recursion sho
n below.

r assignment statements is give

Semantic action (translation scheme)

S-No. ~ Production
T__[SLSL SR e
2 |S=>8S SR . —
3 |e —
1 |S 2ID=E {emit (ID.place=E.place)}
> |ER ST (ER.=T.phce) =
ER iE.Elace=ER.S;i
6 |ER+ { place=N_ewTemp()
T emit(place, = JER., T T.place)
ER.i=place
— ERI | }{EM

For_ more stud i e R
Sudy material S>WmWRILEIOENS Y o hy

-~ gD T RA Lt
R TR
Ay ;“'g(,.;:'_m“n, BREK %

C

g N e
o o AR

CamScanner
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7 ER > - | =NechmpO; laCG)
{ ‘place - . , T.p s
- - T ) cmit(PIace’ ' ER.] ) —
ERLi:p]ilCﬁ :
} _
ERI { ER.s=ERLs}
KB E ER.s=ER.I |
T ST . (TR.=F.place;} .
TR ' { T.placc=TR-5;} _
10 [TR>/ .
. : F { ph-ce:NGWTe';‘nfl{jQ . F plaCC);‘
emit(place, = 1R-b 7 &+ .
TR1.i7place;
}
TR1 { TR.s=TR1.s }
11 (TR /
F { place=NewTemp();
emit(place, =, TR.L, /, F.place);
TR1.Eplace
}
. TR1 { TR.s=TR1.s}
12 [TR=2>¢ { TR.s =TR1.i}
13 |F =1ID | { F.place=ID.placei}
14 |F - CONST { place=NewTemp();
| emit(place , =, CONST, value);
F.place=place :
| }
15 | F=> (E) '_ { place=NewTemp(); A
. emit(place, =, E.place);
F.place=place
i

Top down/ recursive descent parsers are implemented ysjp
below. In-these procedures, inherited attributes (.i)have bee
hence they are passed by value, whereas synthesized attripyt
by reference. . e
int ER (ER_i, &ER_S)

8 procedures as given
h evaluated previously;
es (.§) should be passed

{ ‘
if (match('+"'))
{ B
}
else if (match('-')) "

................................................................................................................................... c%ned by CamScanner

L LT e R AR T e B S A e e T

e S s o e G S e e i DR et G R 7 e T i e s e A
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{
sign = '-';
}
else
R !
ER _s= ER1 i; ' |
return (SUCCESS) ; /*for ER1*/
}

if(T(T.place)==SUCCESS)
{

- Place=NewTemp () ;
emit (place. ()ER _i(), sign(),T.place());
ER_i=place; /*for T */
}
if(ER(ERIH;,ER_s)==SUCCESS)
{
ER_s=ERl_s; /*for E*/
return (SUCCESS) ;
}
}
return (FAILURE) ;
y

Similarly the code for 'S' is given below:
int S()
{
if (curr_ token==ID) ;
{ ' - H
-7 iID_place=strdup (yytext) ; ) id
match (ID) ; - ij
if (match(':="))
( A
if (E (E_PLACE)== SUCCESS)
{ .
if (match(';'))
{

emit (ID_place. () ,E_place(),',"');
return (SUCCESS) ;

’ | ' S|
’ g |
return(FAILURE); . i
} :
To generate the intermediate.code for "i=j+k" using the top down translation scheme, k
SL() procedure is called. This calls the S() proce?dure given above. In this procedure
ID is matched. Then it searches for =" token. If it matches, E's E.place has to be got.

"WV"JV m‘v AT AR LR o ZOSS TS - R
SR den c:i%ned by CamScanner
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It is got by calling E() procedure. E() procedure has to
ER() procedure checks for '+ sign. Then it matches TOp
* This returns ER+T value. For this again ER.place valye
success. Once this is obtained E() procedure returns suc
tained in S() procedure. Ifa 'i' is encountered then it emits
ID's place and E's place values (ie i=t0)

Hence the TAC emitted is

call ER() procedure. Thjg
rocedure to return Success,

is obtained which returng
cess. Then a match is ob-
the three address cgde for

&

Top down/ recursive descent parsers are implemented using procedures, Here,
the inherited attributes (.i)have been evaluated previously. Hence they are passed
by value, The synthesized attributes (-s) should be evaluated later. Hence they
are passed by reference.

6.5.4 Recursive evaluator method

The parse tree method offers only low compile time efficiency, but is capable of
handling all types of grammars that are not circular. Top-down and bottom-up transla-
tion interleaves translation with parsing and are compile time efficient, They can handle
a restricted class of grammars. In parse tree method a parse tree is created, a depen-
dency graph is drawn and then the semantic rules of the parse tree nodes are evalu-
ated in topological sorted order.’ '

. In recursive evaluator method, a parse tree is explicitly created during parsing.
Then it is traversed and the semantic rules are evaluated using mutually recursive
functions. The nodes can be visited left to right or right to left. The main consider-
ations involved in arriving at the correct order for the traversal of the parse tree are
listed below:

1. Allinherited attributes at-a node are computed before the first visited.

2. The synthesized attributes are computed before we leave the node for the last
time,
For example consider the following translation scheme for declaration
rule3: declaration — id_list'=' dtype
{ id_list.type = dtype.category; }

The recursive procedure of this production initially creates an id_list and a
dtype_list.Then it obtains category synthesized term dtype-node (passing by refer-
ence as its value is evaluated later ). Then this category is passed onto id_list node's
type recursively. The main characteristic of this method is to evaluate the semantic
rules of the root node of the tree. This internally evaluates the semantic rules of all its

children. This procedure is done recursively. This method is similar to top down trans-
lation functions. - |
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void declaration_node ]

{ * id_l:i.st_ptr;

ijd list_node
4 type_node * dtype node ptr;

. 4F ( rule no == 3)
/*decl - id list '

Intermediate Code Generation 6.37

:: eval_ semantic_rules( )

' dtype ' ; ' */
id list ptr = (id-list _node *) children[0];
dty-pe__node_ptr = (dtype nod *) children[1];

/* getting the 'category' synthesized term dtype node */
dtype node_ptr — eval semantic_rules( dtype ca;;egory, ;

/* passing the 'category' to the children of id list */
id__list __ptr - eval_semantic_rules (dtype catengy),-

}
6.5.5 Comparison of Translation Methods

tree, makes a create parse

parse tree. Emits

out translated code

Parameter Parse tree Bottom up Top down Recursive
Method evaluation
Creates a parse | Does not Does not create the | Creates parse

tree, traverses
it to evaluate

are no cycles
in dependency

graph

dependency tree. Emits out

graph, the translated during top down attributes and
Principle on .| evaluates the code during parsing emits the
which the attributes bottom up translated
method is based on parsing code. These
based topological two steps are

sort of delinked

dependency totally.

graph and

gives out the

translated code
Applicability | Can be applied- | LL(1) and LL(1) grammar Any grammar

to any most of the

grammar LR(1)

provided there | grammar

Efficiency

Creation of Efficient since
parse tree and we do not
dependency create a parse
graph reduces tree

the efficiency

Efficienl since we

Creation of

do not create a parse tree
parse tre¢ reduces the
efficiency
____________—-—-—-__________—-————
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: i S.
6.5.6. Translation to other intermediate form
a. Translation to postfix intermediate code

SL—SL S
S LS ID=E; {S.code = ID.place || E.code || '=" emit (S-code);
E -E+T { E.code = El.code || T.code || "+ }
| E-T - { E.code = El.code || T.code || ' }
| T -+ { E.code =T.code }
T >T*F { T.code = T1.code || F.code || * }
| T/F { T.code = T1.code || F.code || / }
| F { T.code = F.code }
F —>(E) { F.code = E.code }
| ID { F.code = ID.place }

| CONST _{ F.code = CONST.value }
For example, consider the input "i =j +k", the postfix code is generated as follows:
SL— S
S >ID=E ({S.code=ID.place || E.code ||'=' emit (S.code); }
E ->E+T {E.code=El.code | T.code || '+ }
T ->F { T.code = F.code }
F —»id { F.code = ID.place }
Based on this jk+ is evaluated, then ijk+= is evaluated,
b. Tfanslatidn to abstract syntax trees

Here, we construct a node for each oOperator and operand, The child
tor node are root nodes representing the sub eXpression constitutin
that operator. Eac_h_node in‘ a syntax tree is implemented as a re
fields. In the node of an operator one field identifies
fields contain pointer to the nodes for the operands,

ren of the opera-
g the operands of
cord with several
the operator ang the remaining

SL—->SL S {add_child(SLI.nptr,S.nptr)
SL.nptFSLl nptr}
IS {SL.nptr=new SLnode(S.nptr))
S — id:=E  {S.nptr=new assignnode (1=,ID-nptr,E.nptr)}
E — E+T - {E.nptFnewbin_op_node('+'

, E1 ‘0Pt Tonptr)}

| E-T {E.nptr=newbin_op_node('-' El-nptr,T,nptr)}
IT {E.nptr=T.nptr}

T—>T*F {T.nptr=newbin-op_node(*, TLuptr,Fnptr)y
|T/F {T,nptr=neWbin-op_node('/', Tl.nptr,F,nptr) }
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|F {T.nptr=F.nptr}
F—(E) {F'npt\FE.nptr}
|id {E.nptr=id.nptr}

| CONST {Fnptr=CONST.nptr}

=ik is generated as
For example consider the input statement "i=j+k"; the syntax tre¢ 1S g
shown below: '

SL-> S {newnode is created for S}

S—id:=E {new assignment node := with left and right child 'id' and 'E' respec
tively are created}

= level 0
'+} level 1

i} level 2

is created at output. The equivalent AST is

A
A

Example 6.14 : Give the top-down translation scheme for the following grammar-
E— E+T

{ $0.val = $1.val +33.val; }
"ESET |
{ $0.val = $1.val +§3.val; }

T — IntConstant '

{$0.val= $1.lexval; }
B->T- _

{ $0.val = $1.val; }
T—(E)

{ $0.val=$1.val; }
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The trace for the input string "id val=3 *

id val=2 is given below:

Stack Input Action

0 (id)*id$ | Shift 5 Atbuts

05 id)*id $ Shift 8
. a.Push id.val=3. .

058 )*id$ Reduce 3 F - id, {$0.valld=“;l]l v3z;l}

05 ‘i Pop 8, goto [5,F]=1 a.Push id.val—-:B'

S J*idS | Reduce 1T F {$0val = $1.val }

_ Pop 1, goto [5,T]=6 a.Push id. 1;3'

g g g ) ) : 'lg $ Shift 7 { $0.val =v§l .V;I }
id $ Reduce 4 F — (T) 3 pops; a.Push 3

Pop 7 6 5, goto [0,F]=1

o —

Stack Input Action . Attributes
01 *id$ Reduce 1 T F, { $0.val = $1.val }
Pop 1" goto [0’ T]=2 a.pop; a.Push 3
02 *id$ Sh?ft 3 ot 10T) a.le'u}s)h mul
023 id $ Shift 8 a.push id.val=2
0238 $ Reduce 3 F — id, a.pop a.Push 2
Pop 8, goto [3,F]=4 { $0.val = §$1.val *
0234 $ Reduce 2 T—> T *F $2.val; }
02 $ Pop 4 3 2, goto [0,T]=2 3 pops;
Accept a.Push 3*2=6 -

Example 6.17:

Consider the following SDD with inherited attributes, Show the actions of the LR .

parser.
E— TR

{ $2.in= $l.val; $0.val = $2.val;}

R— +TR

{$3.in=3§0.in + $2.val: $0.val = $3.val; }

R—oe¢

{ $0.val =$1.val; }

T— (E) {#0.val=§l.val;})

T-id

{$0.val = id.lookup; }

The LR parser states are given below:

-~

At Wher Lgini it

L o i TR ARk
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Reduce 3
TESTR — 4 Reduce 1|
- tE— Te ]
2 |[R>+TR R—e +TR 2:E->» TRe
J|R>¢ R o +
4 |T—- (E) T
g T (. “R>+eTR
! T—e (E)-
( 3:T—(<E) + T—>eid
E—e TR
0:S>eE T e (B) Eeialio
B s TR f' T_—:. (id) ?@E + T
Toe(E) [ 4
T—eid . id id
id A 5:R-—> +TeR
E TToide | R ¢+ TR
;’ ’ Reduce 5 R —>e
8: 5> Ee Reduce 3
Reduce 0 6:R—>+TRe 4—4’/
: Reduce 2
~ The trace for the input string "id val=3 * id val=2 is given below:
| Stack Input Action Attributes
01 ‘Id +id$ Shift 7 { $0.val =id.val
07 +id§° Reduce 5T — id pop; attr.Push (3)
Pop 7, goto [0'T]=2 $ 2.in=§1l.val
01 +id $ Shift 4 R.in = (1).attr }
014 +id $ Shift 7 { $0.val = id.val
0147 | $ Reduce 5T — id, pop; attr.Push (2); }
Pop 7, goto [4,T]=5 {$3.in =$0.in+$1.val
0 14 5 $ Reduce 3 R— ¢ (5).attl" = (l)attH-Z
Goto [5,R]=6 $0.val = $0.in
$0.val = (5).attr*5 }
[Stack__ [ Input - Action Attributes
01456 | $ Reduce2 R - TR { $0.val = §3.val
_ Pop 4 5 6, goto [1,R]=2 pop; attr.Push (5); }
012 Reduce FE =5 T R { $0.val = $3.val
$ Pop 12, goto [0,E]=8 pop; attr.Push (5); }
108 $ Accept {$0.val=5
attr.top =5, }
Conclusion: o

In chapter 6, the need for intermediate code has been explained. The different forms
of intermediate codes - postfix notation, AST and TAC have been explained along
with their implementation and examples. The methods of implementation of TAC -
quadruple, triples and indirect triples have also been explained. This chapter also ex-
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mbol tab] '
create anew sy e.
* similar action, It uses the operation mktable(lop(tblpt:;)btlz A pointer of the enclogis
Here, top(tblptr) gives the enclosing scope of the new .

‘ iatized to 0.
symbol table is then pushed along with the offset mltlah,z ° | T

, 5 1al T
2. Including structure / record type for non-termir

. inal L creates a ney,
When the keyword struct is encountered, the mar.kcr non tt]t:lfsmsl; mbol table is thor
symbol table for the fields of the structure. A PO“"ter 10 the width of the synthe.
pushed onto stack with the offset 0. The action 'end retumT tablo, the types and tho
sized attribute T.width. Using pointer To the struct symbo al ; igle
widths of the individual fields can be retrieved from the symbol table.

) ith struct data typeg
Hence the translation scheme for the nested proccdures with typ
- can be rewritten as follows:

CFG Semantic actions _
P>MD { addwidth((top(tblptr),top(offset));
pop(tblptr); pop (offset) }
M-oe | { t=mktable(nil);
| push(t,tblptr); push(0,offset); }
D—-D, D, | { enter(top(tblptr), id.name, T.type,
top(offset));
D - Tid; top(offset) = top(offset) + T.width }
D — procid; N D;S { t=top(tblptr);

addwidth(t,top(offset));
Pop(tblptr); pop(offset);
enterproc(top(tblptr), id.name, t) }

N = ¢ { t=mktablc(top(tblptr));
push(t,tblptr); push(0,offset); }
T — integer { Ttype= integer;

| Twidth=4
T — real | { Ttype = real;
T.width =g}

. T —.array [ num] of T1 { Titype = array (num,val, T1 type);

T.width = num.val x T1.width }

{ Ttype= pointer(T1.type);
T.width =4

T—&TI

T — record L D end | {T.type= record(top(tblptr));

T.width = top(offset);
Pop(tblptr);pop(offset); }
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