W CS 304 Compiler Design " iﬁli.':i"’ % Module-6
» @ CODE GENERATION
The final phase in compiler model is the code generator. It takes as input an

intermediate representation of the source program and produces as

output an equivalent
target program.

Position of code generator

source front | intermediate i code gintctmcdiatc code ‘ target
- " + . »)
program | end code | _optimizer i code generator | program

| _

i

i

1]

]

{

symbol table

Fig. 4.1 Position of code generitor
ISSUES IN THE DESIGN OF A CODE GENERATOR

The following'issues arise during the code generation phase:

Input to code generator e
Target program i
Memory management

Instruction selection

Register allocation

AN ST R R

Evaluation order

1. Input to code generator:

® The input to the code generation consists of the intermediate representation of the
source program produced by front end, together with information in the
symbol table to determine run-time addresses of the data objects denoted by
the names in the intermediate representation.

Intermediate representation can be :
a. Linear representation such as postfix notation
b. Three address representation such as quadruples

c. Virtual machine representation such as stack machine code

http://www.ktustudents.in/
http://www.ktustudents.in
http://www.ktustudents.in

/

CS 304 Compiler Design Module—6

d. Graphical representations such as syntax trees and dags.

* Prior to code generation, the front end must be scanned, parsed andranslated
into intermediate representation along with necessary type checking. Therefore,
input to code generation is assumed to be error-free.

2. Target program:

* The output of the code generator is the target program.
The output may be:

a. Absolute machine language

- It can be placed in a fixed memory location and can be executed immediately.

b. Relocatable machine language

- It allows subprograms to be compiled separately. A set of relocatable obje-ct
modules can be linked together and loaded for execution by a compiler

c. Assemblylanguage

- Code generation is made easier

3. Memory management:

® Names in the source program are mapped to addresses of data objects in
run-time memory by the front end and code generator.

* It makes use of symbol table, that is, a name in a three-address statement refexs
to a symbol-table entry for the name.

® Labelsin three-address statements have to be coniverted to addresses of

instructions.
For example,
j:gotoi generatesjump instructionas follows :

if i <j,a backward jump instruction with target addres s equal to location of code for
quadruple i is generated.

if i > j, the jump is forward.

4. Instruction selection:
e The instructions of target machine should be complete and uniform.

Instruction speeds and machine idioms are important factors when efficiency o £

target program is considered.
L}

(3%

4

r

http://www.ktustudents.in/
http://www.ktustudents.in

- —— AVATAY Ir rawvac o inrun AV

(CS 304 Compiler Design Moclule-6
The quality of the generated code is determined by its speed and size.

The former statement can be translated into the latter statementas shown below:

a=b+c '
d:=a+e can be translated into

|

MOV'bRo
ADD Ry
MOV Roa
MOV aRo -— This can be eliminated
ADD Ry

5. Registerallocation

* Instructions involving register operands are shorter and faster than those
involving operands in memory.

* The use of registers is subdivided into two subproblems :

Register allocation - the set of variables that will reside in registers at a point in the
program is selected.

Register assignment - the specific register that a variable will reside in is
picked

¢ Certain machine requires even-odd register pairs for some operands and results.

For example, consider the division instruction of the form: Div x, y

where, x - dividend even register in even/odd register pair

y - divisor even register holds the remainder odd register holds the quotient

6. Evaluation order
* The order in which the computations are performed can affect the

efficiency of the target code. Some com ' i
: : : putation orders requ i
to hold intermediate results than others Auire fewer registers

.

http://www.ktustudents.in/
http://www.ktustudents.in

Module-6

CS 304 Compiler Design

TARGET MACHINE

* Familiarity with the target machine and its instruction set is a prerequisite for
designing a good code generator.

e The target computer is a byte-addressable machine with 4 bytes to a word. It has n

general-purpose registers, Ro, Ry, ..., R
It has two-address instructions of the form:
op Ssource, destination

where, op is an op-code, and source and destination are data fields.

® It has the following op-codes:

MOV (move source to destination)
ADD (add source to destination)

SUB (subtractsource from destination)

® The source and destination of an instruction are specified by combining registers
and memory locations with address modes.

Address modes with their assembly-language forms

MODE FORM ADDRESS ADDED COST
absolute M M 1
register R R 0
indexed c(R) c+contents(R) 1
indirect register *R contents (R) 0
indirect indexed *c(R) contents(c+ 1

~ conten ts(R))

literal #c c 1

http://www.ktustudents.in/
http://www.ktustudents.in

CS 304 Com iler Desi
prier Lesign Module-6

. -
For example : MO\{ Ro, M stores contents of Register Ry into memory
location M ; MOV 4(Ry), M stores the value
contents(4+contents(Ry)) into M.

Instruction costs :
® Instruction cost = 1+cost for source and destination address modes. This cost
corresponds to the length of the instruction.

Address modes involving registers have cost zero.
Address modes involving memory location or literal have cost one.

Instruction length should be minimized if space is important. Doing so also
minimizes the time taken to fetch and perform the instruction.

For example : MOV RO, R1 copies the contents of register RO into R1. It has cost one,
since it occupies only one word of memory.

® The three-address statement a : = b + ¢ can be implemented by many- different

instruction sequences :

i) MOVb, Ry
ADD ¢, Rg cost=6
MOV Ro, 2|
ii) MOVDb,a
ADDc, a cost=6

iii) AssumingRg, R; and Rz contain the addresses of a, b, and c:
MOV *Ry, *Rg

ADD *Ry, *Rg cost=2

® Inorder to generate good code for target machine, we must utilize its
addressing capabilities efficiently.

http://www.ktustudents.in/
http://www.ktustudents.in

CS 304 Compiler Design Module-6

A SIMPLE CODE GENERATOR

® A code generator generates target code for a sequence of three- address
statements and effectively uses registers to store operands of the statements.

® Forexample: consider the three-address statement a := b+c

It can have the following sequence of codes:

ADD R, R; Cost=1 //ifR;containsb and R; contains ¢
(or)
ADD ¢, R; Cost=2 //ifcisinamemorylocation
(or)
MOV ¢, R; Cost=3 // movecfrom memory to Rjand add
ADD R;, R;

Register and Address Descriptors:

* A register descriptor is used to keep track of what is currently in each
registers. The register descriptors show that initiallyall the registers are empty.

® An address descriptor stores the location where the current value of the
name can be found at run time.

A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a
basic block.

For each three-address statement of the formx:=yop z, perform the following

actions:

1. Invoke a function getreg to determine the location L where the result of the computation y

op z should be stored.

2 Consult the address descriptor for y to determine y", the currentlocation of y. Prefer the

register for y" if the value of yis currently both in memoryand a register. If the value of y
is not already in L, generate the instruction MOVy’, L to placeacopyofyin L.

http://www.ktustudents.in/
http://www.ktustudents.in

CS 304 Compiler Design Module-6

3. Generate the instruction OP z’', L where 2" is a current location of z. Prefer a register to
a memory location if z is in both, Update the address descriptor of x to indicate that x is
In location L. If x is in L, update its descriptor and remove x from all other descriptors.

4. If the current values of yor z have no next uses, are not live on exit from the block, and are
in registers, alter the register descriptor to indicate that, after executionof x: = yop z,
those registers will no longer contain y or z.

Generating Code for Assignment Statements:

® The assignmentd : = (a-b) + (a-c) + (a-c) might be translated into the
following three- address code sequence:

t:=a-b
u:=a-c
vi=t+u
d:=v+u
with d live at the end.

Code sequence for the example is:

Statements Code Generated Register Address
descriptor descriptor
Register empty
L
t:=a-b MOV a, Ry Ro contains t tinRo
SUB b, RO
u:=a-c MOV a, R1 Rp contains t tin Ry
SUBc,R1 R1 contains u uinR1
vi=t+u ADD Ry, Ry Ry contains v uin R,
R; contains u vin Ry
d:=v+u ADD R;, Ry Ro contains d dinRg
| MOVR,, d d in Ry and memory

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment statements

a:=b[i]anda[i]:=b

http://www.ktustudents.in/
http://www.ktustudents.in

... dthned by CamScanner

http://www.ktustudents.in/
http://www.ktustudents.in

