

CS2056-Distributed System Page 3

Introduction

Programming Models for Distributed Communications

–

Remote Procedure Calls –

Client programs call procedures in server programs

–

Remote Method Invocation –

Objects invoke methods of objects on distributed hosts

–

Event-based Programming Model –

Objects receive notice of events in other objects in which

they have interest

Middleware

• Middleware: software that allows a level of programming beyond processes and message
passing

–

Uses protocols based on messages between processes to provide its higher-level abstractions

such as remote invocation and events

–

Supports location transparency

–

Usually uses an interface definition language (IDL) to define interfaces

Communication and invocation OS architecture.
-Processes and threads-Protection-OS layer-Introduction-Operating System Support

RMI.
Case study: Java -Events and notifications-Remote procedure calls-distributed objects

Communication between -Introduction-Distributed Objects and Remote Invocation
UNIT II

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 4

Interfaces in Programming Languages

– Current PL allow programs to be developed as a set of modules that communicate with each

other. Permitted interact ions between modules are defined by interfaces

– A specified interface can be implemented by different modules without the need to modify

other modules using the interface

• Interfaces in Distributed Systems

– When modules are in different processes or on different hosts there are limitations

on the interactions that can occur. Only actions with parameters that are fully specified and

understood can communicate effectively to request or provide services to modules in another

process

– A service interface allows a client to request and a server to provide particular services

– A remote interface allows objects to be passed as arguments to and results from distributed

modules

• Object Interfaces

– An interface defines the signatures of a set of methods, including arguments, argument types,

return values and exceptions. Implementation details are not included in an interface.

A class may implement an interface by specifying behavior for each method in the interface.

Interfaces do not have constructors.

Communication between Distributed Objects

The Object Model

Five Parts of the Object Model

– An object-oriented program consists of a collection of interacting objects

• Objects consist of a set of data and a set of methods

• In DS, object’s data should be accessible only via methods

Object References

– Objects are accessed by object references

– Object references can be assigned to variables, passed as arguments, and returned as the result

of a method

– Can also specify a method to be invoked on that object

Interfaces

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 5

– Provide a definition of the signatures of a set of methods without specifying their

implementation

– Define types that can be used to declare the type of variables or of the parameters and return

values of methods

Actions

– Objects invoke methods in other objects

– An invocation can include additional information as arguments to perform the behavior

specified by the method

– Effects of invoking a method

1. The state of the receiving object may be changed

2. A new object may be instantiated

3. Further invocations on methods in other objects may occur

4. An exception may be generated if there is a problem encountered

Exceptions

– Provide a clean way to deal with unexpected events or errors

– A block of code can be defined to throw an exception when errors or unexpected conditions

occur. Then control passes to code that catches the exception

Garbage Collection

– Provide a means of freeing the space that is no longer needed

– Java (automatic), C++ (user supplied)

Distributed Objects

• Physical distribution of objects into different processes or computers in a distributed system

– Object state consists of the values of its instance variables

– Object methods invoked by remote method invocation (RMI)

– Object encapsulation: object state accessed only by the object methods

Usually adopt the client-server architecture

– Basic model

• Objects are managed by servers and

• Their clients invoke their methods using RMI

– Steps

1. The client sends the RMI request in a message to the server

2. The server executes the invoked method of the object

3. The server returns the result to the client in another message

– Other models

• Chains of related invocations: objects in servers may become clients of objects in other servers

• Object replication: objects can be replicated for fault tolerance and performance

• Object migration: objects can be migrated to enhancing performance and availability

The Distributed Object Model

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 6

Two fundamental concepts: Remote Object Reference and Remote Interface

– Each process contains objects, some of which can receive remote invocations are called remote

objects (B, F), others only local invocations

– Objects need to know the remote object reference of an object in another process in order to

invoke its methods, called remote method invocations

– Every remote object has a remote interface that specifies which of its methods can be invoked

remotely

Remote and local method invocations

Five Parts of Distributed Object Model

• Remote Object References

– accessing the remote object

– identifier throughout a distributed system

– can be passed as arguments

• Remote Interfaces

– specifying which methods can be invoked remotely

– name, arguments, return type

– Interface Definition Language (IDL) used for defining remote interface

Remote Object and Its remote Interface

• Actions

– An action initiated by a method invocation may result in further invocations on methods in

other objects located indifference processes or computers

– Remote invocations could lead to the instantiation of new objects, ie. objects M and N of

following figure.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 7

• Exceptions

– More kinds of exceptions: i.e. timeout exception

- RMI should be able to raise exceptions such as timeouts that are due to distribution as well as

those raised during the execution of the method invoked

• Garbage Collection

- Distributed garbage collections is generally achieved by cooperation between the existing local

garbage collector and an added module that carries out a form of distributed garbage collection,

usually based on reference counting

C

NM

K

invocation
remote

invocation
remote

L

instantiateinstantiate

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 10

Design Issues for RMI

• Two design issues that arise in extension of local method invocation for RMI

– The choice of invocation semantics

• Although local invocations are executed exactly once, this cannot always be the case for RMI

due to transmission error

– Either request or reply message may be lost

– Either server or client may be crashed

– The level of transparency

• Make remote invocation as much like local invocation as possible

RMI Design Issues: Invocation Semantics

• Error handling for delivery guarantees

– Retry request message: whether to retransmit the request message until either a reply is

received or the server is assumed to have failed

– Duplicate filtering: when retransmissions are used, whether to filter out duplicate

requests at the server

– Retransmission of results: whether to keep a history of result messages to enable lost

results to be retransmitted without re-executing the operations

• Choices of invocation semantics

– Maybe: the method executed once or not at all (no retry nor retransmit)

– At-least-once: the method executed at least once

– At-most-once: the method executed exactly once

Invocation semantics: choices of interest

RMI Design Issues: Transparency

• Transparent remote invocation: like a local call

– marshalling/unmarshalling

– locating remote objects

– accessing/syntax

• Differences between local and remote invocations

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 11

– latency: a remote invocation is usually several order of magnitude greater than that of a

local one

– availability: remote invocation is more likely to fail

– errors/exceptions: failure of the network? server? hard to tell

• syntax might need to be different to handle different local vs remote errors/exceptions (e.g.

Argus)

– consistency on the remote machine:

• Argus: incomplete transactions, abort, restore states [as if the call was never made]

Implementation of RMI

•Communication module

– Two cooperating communication modules carry out the request-reply protocols:

message type, request ID, remote object reference

• Transmit request and reply messages between client and server

• Implement specific invocation semantics

– The communication module in the server

• selects the dispatcher for the class of the object to be invoked,

• passes on local reference from remote reference module,

• returns request

The role of proxy and skeleton in remote method invocation

• Remote reference module

– Responsible for translating between local and remote object references and for creating remote

object references

– remote object table: records the correspondence between local and remote object references

• remote objects held by the process (B on server)

• local proxy (B on client)

– When a remote object is to be passed for the first time, the module is asked to create a remote

object reference, which it adds to its table

• Servant

– An instance of a class which provides the body of a remote object

– handles the remote requests

•RMI software

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 12

– Proxy: behaves like a local object, but represents the remote object

– Dispatcher: look at the methodID and call the corresponding method in the skeleton

– Skeleton: implements the method

Generated automatically by an interface compiler

Implementation Alternatives of RMI

• Dynamic invocation

– Proxies are static—interface complied into client code

– Dynamic—interface available during run time

• Generic invocation; more info in ―Interface Repository‖ (COBRA)

• Dynamic loading of classes (Java RMI)

•Binder

– A separate service to locate service/object by name through table mapping for names and

remote object references

• Activation of remote objects

– Motivation: many server objects not necessarily in use all of the time

• Servers can be started whenever they are needed by clients, similar to inetd

– Object status: active or passive

• active: available for invocation in a running process

• passive: not running, state is stored and methods are pending

– Activation of objects:

• creating an active object from the corresponding passive object by creating a

new instance of its class

• initializing its instance variables from the stored state

– Responsibilities of activator

• Register passive objects that are available for activation

• Start named server processes and activate remote objects in them

• Keep track of the locations of the servers for remote objects that it has already

activated

• Persistent object stores

– An object that is guaranteed to live between activations of processes is called a

persistent object

– Persistent object store: managing the persistent objects

• stored in marshaled from on disk for retrieval

• saved those that were modified

– Deciding whether an object is persistent or not:

• persistent root: any descendent objects are persistent (persistent Java, PerDiS)

• some classes are declared persistent (Arjuna system)

• Object location

– specifying a location: ip address, port #, ...

– location service for migratable objects

• Map remote object references to their probable current locations

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 13

• Cache/broadcast scheme (similar to ARP)

– Cache locations

– If not in cache, broadcast to find it

• Improvement: forwarding (similar to mobile IP)

Distributed Garbage Collection

• Aim: ensure that an object

– continues to exist if a local or remote reference to it is still held anywhere

– be collected as soon as no object any longer holds a reference to it

• General approach: reference count

• Java's approach

– the server of an object (B) keeps track of proxies

– when a proxy is created for a remote object

• addRef(B) tells the server to add an entry

– when the local host's garbage collector removes the proxy

• removeRef(B) tells the server to remove the entry

– when no entries for object B, the object on server is deallocated

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 16

Remote Procedure Call

• client: "stub" instead of "proxy" (same function, different names)

– local call, marshal arguments, communicate the request

•server:

– dispatcher

– "stub": unmarshal arguments, communicate the results back

Role of client and server stub procedures in RPC in the context of a procedural language

Case Study: Sun RPC

•Sun RPC: client-server in the SUN NFS (network file system)

– UDP or TCP; in other unix OS as well

– Also called ONC (Open Network Computing) RPC

•Interface Definition Language (IDL)

– initially XDR is for data representation, extended to be IDL

– less modern than CORBA IDL and Java

• program numbers instead of interface names

• procedure numbers instead of procedure names

• single input parameter (structs)

– rpcgen: compiler for XDR

• client stub; server main procedure, dispatcher, and server stub

• XDR marshalling, unmarshaling

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 17

•Binding (registry) via a local binder - portmapper

– Server registers its program/version/port numbers with portmapper

– Client contacts the portmapper at a fixed port with program/version numbers to get the

server port

– Different instances of the same service can be run on different computers at different ports

•Authentication

– request and reply have additional fields

– unix style (uid, gid), shared key for signing, Kerberos

Files interface in Sun XDR

Events and Notifications

•Idea behind the use of events

– One object can react to a change occurring in another object

•Events

– Notifications of events: objects that represent events

• asynchronous and determined by receivers what events are interested

– event types

• each type has attributes (information in it)

• subscription filtering: focus on certain values in the attributes (e.g. "buy" events, but

only "buy car" events)

•Publish-subscribe paradigm

– publish events to send

– subscribe events to receive

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 18

•Main characteristics in distributed event-based systems

– Heterogeneous: a way to standardize communication in heterogeneous

systems

• not designed to communicate directly

– Asynchronous: notifications are sent asynchronously

• no need for a publisher to wait for each subscriber--subscribers come and go

Dealing room system: allow dealers using computers to see the latest information about the

market prices of the stocks they deal in

Distributed Event Notification

• Distributed event notification

– decouple publishers from subscribers via an event service (manager)

• Architecture: roles of participating objects

– object of interest (usually changes in states are interesting)

– event

– notification

– subscriber

– observer object (proxy) [reduce work on the object of interest]

•forwarding

• filtering of events types and content/attributes

• patterns of events (occurrence of multiple events, not just one)

• mailboxes (notifications in batch es, subscriber might not be ready)

– publisher (object of interest or observer object)

• generates event notifications

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 19

Example: Distributed Event Notification

•Three cases

– Inside object without an observer: send notifications directly to the subscribers

– Inside object with an observer: send notification via the observer to the subscribers

– Outside object (with an observer)

1. An observer queries the object of interest in order to discover when events occur

2. The observer sends notifications to the subscribers

Case Study: Jini Distributed Event Specification

•Jini

–Allow a potential subscriber in one Java Virtual Machine (JVM) to subscribe to and

receive notifications of events in an objectof interest in another JVM

– Main objects

• event generators (publishers)

• remote event listeners (subscribers)

• remote events (events)

• third-party agents (observers)

– An object subscribes to events by informing the event generator about the type of event

and specifying a remote event listener as the target for notification

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 22

Case Study: Java RMI

Java Remote interfaces Shape and ShapeList and Java class ShapeListServant implements

interface ShapeList

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 23

Java class ShapeListServer with main and Java client of ShapreList

Naming class of Java RMIregistry

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 24

Java class ShapeListServer with main method

Java class ShapeListServant implements interface ShapeList

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 25

Java class ShapeListServant implements interface ShapeList

Java RMI Callbacks

•Callbacks

– server notifying the clients of events

– why?

• polling from clients increases overhead on server

• not up-to-date for clients to inform users

– how

• remote object (callback object) on client for server to call

• client tells the server about the callback object, server put the client on a list

• server call methods on the callback object when events occur

– client might forget to remove itself from the list

• lease--client expire

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 28

The task of any operating system is to provide problem-oriented abstractions of the underlying

physical resources – the processors, memory, networks, and storage media. An operating system

such as UNIX (and its variants, such as Linux and Mac OS X) or Windows (and its variants,

such as XP, Vista and Windows 7) provides the programmer with, for example, files rather than

disk blocks, and with sockets rather than raw network access. It takes over the physical resources

on a single node and manages them to present these resource abstractions through the system-call

interface.

The operating system’s middleware support role, it is useful to gain some historical perspective

by examining two operating system concepts that have come about during the development of

distributed systems: network operating systems and distributed operating systems.

Both UNIX and Windows are examples of network operating systems. They have a networking

capability built into them and so can be used to access remote resources. Access is network-

transparent for some – not all – types of resource. For example, through a distributed file system

such as NFS, users have network-transparent access to files. That is, many of the files that users

access are stored remotely, on a server, and this is largely transparent to their applications.

An operating system that produces a single system image like this for all the resources in a

distributed system is called a distributed operating system

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 29

Middleware and the Operating System

What is a distributed OS?

• Presents users (and applications) with an integrated computing platform that hides

the individual computers.

• Has control over all of the nodes (computers) in the network and allocates their

resources to tasks without user involvement.

• In a distributed OS, the user doesn't know (or care) where his programs

are running.

• Examples:

• Cluster computer systems

• V system, Sprite

• In fact, there are no distributed operating systems in general use, only network operating

systems such as UNIX, Mac OS and Windows.

• to remain the case, for two main reasons.

The first is that users have much invested in their application software, which often meets their

current problem-solving needs; they will not adopt a new operating system that will not run their

applications, whatever efficiency advantages it offers.

The second reason against the adoption of distributed operating systems is that users tend to

prefer to have a degree of autonomy for their machines, even in a closely knit organization.

Combination of middleware and network OS

• No distributed OS in general use

– Users have much invested in their application software

– Users tend to prefer to have a degree of autonomy for their machines

• Network OS provides autonomy

• Middleware provides network-transparent access resource

The relationship between OS and Middleware

• Operating System

– Tasks: processing, storage and communication

– Components: kernel, library, user-level services

• Middleware

– runs on a variety of OS-hardware combinations

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 30

– remote invocations

Functions that OS should provide for middleware

The following figure shows how the operating system layer at each of two nodes supports a

common middleware layer in providing a distributed infrastructure for applications and services.

Encapsulation: They should provide a useful service interface to their resources – that is, a set of

operations that meet their clients’ needs. Details such as management of memory and devices

used to implement resources should be hidden from clients.

Protection: Resources require protection from illegitimate accesses – for example, files are

protected from being read by users without read permissions, and device registers are protected

from application processes.

Concurrent processing: Clients may share resources and access them concurrently. Resource

managers are responsible for achieving concurrency transparency.

Communication: Operation parameters and results have to be passed to and from resource

managers, over a network or within a computer.

Scheduling: When an operation is invoked, its processing must be scheduled within the kernel or

server.

The core OS components

• Process manager

– Handles the creation of and operations upon processes.

Applications, services

Computer &

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Communication

manager

Thread manager Memory manager

Supervisor

Process manager

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 31

• Thread manager
– Thread creation, synchronization and scheduling

• Communication manager
– Communication between threads attached to different processes on the same

computer

• Memory manager
– Management of physical and virtual memory

• Supervisor
– Dispatching of interrupts, system call traps and other exceptions

– control of memory management unit and hardware caches

processor and floating point unit register manipulations

Software and hardware service layers in distributed systems

Middleware and Openness

• In an open middleware-based distributed system, the protocols used by each middleware

layer should be the same, as well as the interfaces they offer to applications.

Typical Middleware Services

• Communication

• Naming

• Persistence

• Distributed transactions

• Security

Middleware Models

• Distributed files

– Examples?

• Remote procedure call

– Examples?

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 32

• Distributed objects

– Examples?

• Distributed documents

– Examples?

• Others?

– Message-oriented middleware (MOM)

– Service oriented architecture (SOA)

– Document-oriented

Middleware and the Operating System

• Middleware implements abstractions that support network-wide programming. Examples:

• RPC and RMI (Sun RPC, Corba, Java RMI)

• event distribution and filtering (Corba Event Notification, Elvin)

• resource discovery for mobile and ubiquitous computing

• support for multimedia streaming

• Traditional OS's (e.g. early Unix, Windows 3.0)

– simplify, protect and optimize the use of local resources

• Network OS's (e.g. Mach, modern UNIX, Windows NT)

– do the same but they also support a wide range of communication standards and

enable remote processes to access (some) local resources (e.g. files).

DOS vs. NOS vs. Middleware Discussion

• What is good/bad about DOS?

– Transparency

– Other issues have reduced success.

– Problems are often socio-technological.

• What is good/bad about NOS?

– Simple.

– Decoupled, easy to add/remove.

– Lack of transparency.

• What is good/bad about middleware?

– Easy to make multiplatform.

– Easy to start something new.

• But this can also be bad.

Types of Distributed Oss

System Description Main Goal

DOS

Tightly-coupled operating system for

multi-processors and homogeneous

multicomputers

Hide and manage hardware

resources

NOS

Loosely-coupled operating system for

heterogeneous multicomputers (LAN and

WAN)

Offer local services to remote

clients

Middleware
Additional layer atop of NOS

implementing general-purpose services
Provide distribution transparency

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 35

Illegitimate access

• Maliciously contrived code

• Benign code
– contains a bug

– have unanticipated behavior

• Example: read and write in File System
– Illegal user vs. access right control

– Access the file pointer variable directly (setFilePointerRandomly) vs. type-safe

language

• Type–safe language, e.g. Java or Modula-3

• Non-type-safe language, e.g. C or C++

Kernel and Protection

• Kernel
– always runs

– complete access privileges for the physical resources

• Different execution mode
– An address space: a collection of ranges of virtual memory locations, in each of

which a specified combination of memory access rights applies, e.g.: read only or

read-write

– supervisor mode (kernel process) / user mode (user process)

– Interface between kernel and user processes: system call trap

• The price for protection
– switching between different processes take many processor cycles

– a system call trap is a more expensive operation than a simple method call

The System Clock

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 36

Process and thread

• Process
– A program in execution

– Problem: sharing between related activities are awkward and expensive

– Nowadays, a process consists of an execution environment together with one or

more threads

– an analogy at page 215

• Thread
– Abstraction of a single activity

– Benefits

• Responsiveness

• Resource sharing

• Economy

• Utilization of MP architectures

Execution environment

• the unit of resource management

• Consist of

– An address space

– Thread synchronization and communication resources such as semaphores and

communication interfaces (e.g. sockets)

– Higher-level resources such as open files and windows

• Shared by threads within a process

Address space

• Address space
– a unit of management of a process’s virtual memory

– Up to 2
32

 bytes and sometimes up to 2
64

 bytes

– consists of one or more regions

• Region

– an area of continuous virtual memory that is accessible by the threads of the

owning process

• The number of regions is indefinite
– Support a separate stack for each thread

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 37

– access mapped file

– Share memory between processes

• Region can be shared
– Libraries

– Kernel

– Shared data and communication

– Copy-on-write

Creation of new process in distributed system

• Creating process by the operation system
– Fork, exec in UNIX

• Process creation in distributed system
– The choice of a target host

– The creation of an execution environment, an initial thread

Choice of process host

• Choice of process host
– running new processes at their originator’s computer

– sharing processing load between a set of computers

• Load sharing policy
– Transfer policy: situate a new process locally or remotely?

– Location policy: which node should host the new process?

• Static policy without regard to the current state of the system

• Adaptive policy applies heuristics to make their allocation decision

– Migration policy: when&where should migrate the running process?

Stack

Text

Heap

Auxiliary

regions

0

2N

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 38

• Load sharing system
– Centralized

– Hierarchical

– Decentralized

Creation of a new execution environment

• Initializing the address space

– Statically defined format

– With respect to an existing execution environment, e.g. fork

• Copy-on-write scheme

Threads concept and implementation

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 39

Client and server with threads

Alternative server threading architectures

Threads versus multiple processes

• Creating a thread is (much) cheaper than a process (~10-20 times)

• Switching to a different thread in same process is (much) cheaper (5-50 times)

• Threads within same process can share data and other resources more conveniently and

efficiently (without copying or messages)

• Threads within a process are not protected from each other

State associated with execution environments and threads

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remote
remote I/O

per-connection threads per-object threads

objects objects
objects

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 40

Threads implementation

Threads can be implemented:

– in the OS kernel (Win NT, Solaris, Mach)

– at user level (e.g. by a thread library: C threads, pthreads), or in the language

(Ada, Java).

+ lightweight - no system calls

+ modifiable scheduler

+ low cost enables more threads to be employed

- not pre-emptive

- can exploit multiple processors

- - page fault blocks all threads

– hybrid approaches can gain some advantages of both

- user-level hints to kernel scheduler

- hierarchic threads (Solaris 2)

- event-based (SPIN, FastThreads)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 43

Implementation of invocation mechanisms

• Communication primitives
– TCP(UDP) Socket in Unix and Windows

– DoOperation, getRequest, sendReply in Amoeba

– Group communication primitives in V system

• Protocols and openness
– provide standard protocols that enable internetworking between middleware

– integrate novel low-level protocols without upgrading their application

– Static stack

• new layer to be integrated permanently as a ―driver‖

– Dynamic stack

• protocol stack be composed on the fly

• E.g. web browser utilize wide-area wireless link on the road and faster

Ethernet connection in the office

• Invocation costs
– Different invocations

– The factors that matter

• synchronous/asynchronous, domain transition, communication across a

network, thread scheduling and switching

• Invocation over the network
– Delay: the total RPC call time experienced by a client

– Latency: the fixed overhead of an RPC, measured by null RPC

– Throughput: the rate of data transfer between computers in a single RPC

– An example

• Threshold: one extra packet to be sent, might be an extra acknowledge

packet is needed

Invocations between address spaces

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 44

Support for communication and invocation

• The performance of RPC and RMI mechanisms is critical for effective distributed

systems.

– Typical times for 'null procedure call':

– Local procedure call < 1 microseconds

– Remote procedure call ~ 10 milliseconds

– 'network time' (involving about 100 bytes transferred, at 100 megabits/sec.)

accounts for only .01 millisecond; the remaining delays must be in OS and

middleware - latency, not communication time.

• Factors affecting RPC/RMI performance

– marshalling/unmarshalling + operation despatch at the server

– data copying:- application -> kernel space -> communication buffers

– thread scheduling and context switching:- including kernel entry

– protocol processing:- for each protocol layer

– network access delays:- connection setup, network latency

Improve the performance of RPC

• Memory sharing

– rapid communication between processes in the same computer

• Choice of protocol

– TCP/UDP

• E.g. Persistent connections: several invocations during one

– OS’s buffer collect several small messages and send them together

• Invocation within a computer

– Most cross-address-space invocation take place within a computer

– LRPC (lightweight RPC)

RPC delay against parameter size

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 45

 A client stub marshals the call arguments into a message, sends the request message and

receives and unmarshals the reply.

 At the server, a worker thread receives the incoming request, or an I/O threadreceives the

request and passes it to a worker thread; in either case, the worker calls the appropriate

server stub.

 The server stub unmarshals the request message, calls the designated procedure, and

marshals and sends the reply.

 The following are the main components accounting for remote invocation delay, besides

network transmission times:

Marshalling: Marshalling and unmarshalling, which involve copying and converting data, create

a significant overhead as the amount of data grows.

Data copying: Potentially, even after marshalling, message data is copied several times in the

course of an RPC:

1. across the user–kernel boundary, between the client or server address space and kernel

buffers;

2. across each protocol layer (for example, RPC/UDP/IP/Ethernet);

3. between the network interface and kernel buffers.

Transfers between the network interface and main memory are usually handled by direct

memory access (DMA). The processor handles the other copies.

Packet initialization: This involves initializing protocol headers and trailers, including

checksums. The cost is therefore proportional, in part, to the amount of data sent.

Thread scheduling and context switching: These may occur as follows:

1. Several system calls (that is, context switches) are made during an RPC, as stubs

invoke the kernel’s communication operations.

2. One or more server threads is scheduled.

3. If the operating system employs a separate network manager process, then each

Send involves a context switch to one of its threads.

1000 2000

RPC delay

Requested data

size (bytes)

Packet

size

0

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 46

Waiting for acknowledgements: The choice of RPC protocol may influence delay, particularly

when large amounts of data are sent.

A lightweight remote procedure call

Bershad's LRPC

 Uses shared memory for interprocess communication

– while maintaining protection of the two processes

– arguments copied only once (versus four times for convenitional RPC)

 Client threads can execute server code

– via protected entry points only (uses capabilities)

 Up to 3 x faster for local invocations

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 47

Asynchronous operation

• Performance characteristics of the Internet

– High latencies, low bandwidths and high server loads

– Network disconnection and reconnection.

– outweigh any benefits that the OS can provide

• Asynchronous operation

– Concurrent invocations

• E.g., the browser fetches multiple images in a home page by concurrent

GET requests

– Asynchronous invocation: non-blocking call

• E.g., CORBA oneway invocation: maybe semantics, or collect result by a

separate call

• Persistent asynchronous invocations

– Designed for disconnected operation

– Try indefinitely to perform the invocation, until it is known to have succeeded or

failed, or until the application cancels the invocation

– QRPC (Queued RPC)

• Client queues outgoing invocation requests in a stable log

• Server queues invocation results

• The issues to programmers

– How user can continue while the results of invocations are still not known?

The following figure shows the potential benefits of interleaving invocations (such as HTTP

requests) between a client and a single server on a single-processor machine. In the serialized

case, the client marshals the arguments, calls the Send operation and then waits until the reply

from the server arrives – whereupon it Receives, unmarshals and then processes the results. After

this it can make the second invocation.

Times for serialized and concurrent invocations

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 48

In the concurrent case, the first client thread marshals the arguments and calls the Send

operation. The second thread then immediately makes the second invocation. Each thread waits

to receive its results. The total time taken is liable to be lower than in the serialized case, as the

figure shows. Similar benefits apply if the client threads make concurrent requests to several

servers, and if the client executes on a multiprocessor even greater throughput is potentially

possible, since the two threads’ processing can also be overlapped.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

-

CS2056-Distributed System Page 51

Operating System Architecture

 A key principle of distributed systems is openness.

 The major kernel architectures:

 Monolithic kernels

 Micro-kernels

 An open distributed system should make it possible to:

 Run only that system software at each computer that is necessary for its particular

role in the system architecture. For example, system software needs for PDA and

dedicated server are different. Loading redundant modules wastes memory

resources.

 Allow the software (and the computer) implementing any particular service to be

changed independent of other facilities.

 Allow for alternatives of the same service to be provided, when this is required to

suit different users or applications.

 Introduce new services without harming the integrity of existing ones.

 A guiding principle of operating system design:

 The separation of fixed resource management ―mechanisms― from resource

management ―policies‖, which vary from application to application and service to

service.

 For example, an ideal scheduling system would provide mechanisms that enable a

multimedia application such as videoconferencing to meet its real-time demands

The kernel would provide only the most basic mechanisms upon which the

general resource management tasks at a node are carried out.

 Server modules would be dynamically loaded as required, to implement the

required resourced management policies for the currently running applications.

 while coexisting with a non-real-time application such as web browsing.

 Monolithic Kernels

 A monolithic kernel can contain some server processes that execute within its

address space, including file servers and some networking.

 The code that these processes execute is part or the standard kernel configuration.

 Monolithic kernel and microkernel

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 52

 Microkernel

 The microkernel appears as a layer between hardware layer and a layer consisting

of major systems.

If performance is the goal, rather than portability, then middleware may use the

facilities of the microkernel directly.

The role of the microkernel

 Monolithic and Microkernel comparison

 The advantages of a microkernel

 Its extensibility

 Its ability to enforce modularity behind memory protection boundaries.

 Its small kernel has less complexity.

 The advantages of a monolithic

 The relative efficiency with which operations can be invoked because

even invocation to a separate user-level address space on the same node is

more costly.

 Hybrid Approaches

 Pure microkernel operating system such as Chorus & Mach have changed over a

time to allow servers to be loaded dynamically into the kernel address space or

into a user-level address space.

In some operating system such as SPIN, the kernel and all dynamically loaded

modules grafted onto the kernel execute within a single address space

Monolithic Kernel Microkernel

Server: Dynamically loaded server program:Kernel code and data:

.......

.......

Key:

S4

S1

S1 S2 S3

S2 S3 S4

Middleware

Language

support

subsystem

Language

support

subsystem

OS emulation

subsystem

Microkernel

Hardware

The microkernel supports middleware via subsystems

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 55

Case Study of a Distributed Operating System

Introduction to Amoeba

 Originated at a university in Holland, 1981

 Currently used in various EU countries

 Built from the ground up. UNIX emulation added later

 Goal was to build a transparent distributed operating system

 Resources, regardless of their location, are managed by the system, and the user is

unaware of where processes are actually run

The Amoeba System Architecture

 Assumes that a large number of CPUsare available and that each CPU ha 10s of Mb of

memory

 CPUs are organised into processor pools

 CPUs do not need to be of the same architecture (can mix SPARC, Motorola PowerPC,

680x0, Intel, Pentium, etc.)

 When a user types a command, system determines which CPU(s) to execute it on. CPUs

can be timeshared.

 Terminals are X-terminals or PCs running X emulators

 The processor pool doesn't have to be composed of CPU boards enclosed in a cabinet,

they can be on PCs, etc., in different rooms, countries,...

 Some servers (e.g., file servers) run on dedicated processors, because they need to be

available all the time

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 56

The Amoeba Microkernel

 The Amoeba microkernel is used on all terminals (with an on-board processor),

processors, and servers

 The microkernel

manages processes and threads

provides low-level memory management support

supports interprocess communication (point-to-point and group)

handles low-level I/O for the devices attached to the machine

The Amoeba Servers: Introduction

 OS functionality not provided by the microkernel is performed by Amoeba servers

 To use a server, the client calls a stub procedure which marshalls parameters, sends the

message, and blocks until the result comes back

Server Basics

 Amoeba uses capabilities

 Every OS data structure is an object, managed by a server

 To perform an operation on an object, a client performs an RPC with the appropriate

server, specifying the object, the operation to be performed and any parameters needed.

 The operation is transparent (client does not know where server is, nor how the operation

is performed)

 Capabilites

To create an object the client performs an RPC with the server

Server creates the object and returns a capability

To use the object in the future, the client must present the correct capability

The check field is used to protect the capability against forgery

 Object protection

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 57

When an object is created, server generates random check field, which it stores both in

the capability and in its own tables

The rights bits in the capability are set to on

The server sends the owner capability back to the client

Creating a capability with restricted rights

Client can send this new capability to another process

Process Management

 All processes are objects protected by capabilities

 Processes are managed at 3 levels

by process servers, part of the microkernel

by library procedures which act as interfaces

by the run server, which decides where to run the processes

 Process management uses process descriptors

Contains:

platform description

process' owner's capability

etc

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 58

Memory Management

 Designed with performance, simplicity and economics in mind

 Process occupies contiguous segments in memory

 All of a process is constantly in memory

 Process is never swapped out or paged

Communication

 Point-to-point (RPC) and Group

The Amoeba Servers

The File System

 Consists of the Bullet (File) Server, the Directory Server, and the Replication Server

The Bullet Server

 Designed to run on machines with large amounts of RAM and huge local disks

 Used for file storage

 Client process creates a file using the create call

 Bullet server returns a capability that can be used to read the file with

 Files are immutable, and file size is known at file creation time. Contiguous allocation

policies used

The Directory Server

 Used for file naming

 Maps from ASCII names to capabilities

 Directories also protected by capabilities

 Directory server can be used to name ANY object, not just files and directories

The Replication Server

 Used for fault tolerence and performance

 Replication server creates copies of files, when it has time

Other Amoeba Servers

The Run Server

 When user types a command, two decisions have to be made

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System Page 59

On which architecture should the process be run?

Which processor should be chosen?

 Run server manages the processor pools

 Uses processes process descriptor to identify appropriate target architecture

 Checks which of the available processors have sufficient memory to run the process

 Estimates which of the remaining processor has the most available compute power

The Boot Server

 Provides a degree of fault tolerance

 Ensures that servers are up and running

 If it discovers that a server has crashed, it attempts to restart it, otherwise selects another

processor to provide the service

 Boot server can be replicated to guard against its own failure

www.Vidyarthiplus.com

www.Vidyarthiplus.com

