
DISTRIBUTED SYSTEMSCS2056

Consensus and related problems.-Multicast communication
-Elections-Distributed mutual exclusion-Introduction-Coordination and Agreement

tributed debugging.Dis-Global states-Logical time and logical clocks-physical clocks
Synchronizing -Clocks, events and process states-Introduction-Time and Global States

UNIT IV

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

• Importance of time in distributed systems

– A quantity to timestamp events accurately

• To know what time a particular event occurs

• i.e. Recording when an e-commerce transaction occurs

– A synchronization source for several distributed algorithms

• To maintain consistency of distributed data

• i.e. Eliminating duplicate updates

– A timing source for multiple events

• To provide relative order of two events

• i.e. Ensuring the order of cause and effect

• Clocks in computers to establish

– Time at which an event occurred

– Duration of an event or interval between two events

– Sequence of a series of events or the order in which events occurred

11.2 Clocks, Events and Process States

• A distributed system consists of a collection P of N processes pi, i = 1,2,… N

– Each process pi has a state si consisting of its variables (which it transforms as it executes)

– Processes communicate only by messages (via a network)

• Actions of processes: Send, Receive, change own state

• Event: the occurrence of a single action that a process carries out as it executes

• Events at a single process pi, can be placed in a total ordering denoted by the relation →i

between the events. i.e.

– e →i e’ if and only ifevent e occurs before event e’ at process pi

• A history of process pi: is a series of events ordered by →i

– history(pi) = hi =<ei0, ei1, ei2, …>

Clocks

To timestamp events, use the computer‘s clock • At real time, t, the OS reads the time on the

computer‘s hardware clock Hi(t)

• It calculates the time on its software clock Ci(t)=αHi(t) + β

– e.g. a 64 bit value giving nanoseconds since some base time

– Clock resolution: period between updates of the clock value

• In general, the clock is not completely accurate – but if Ci behaves well enough, it can be used

to timestamp events at pi

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Skew between computer clocks in a distributed system

Computer clocks are not generally in perfect agreement

• Clock skew: the difference between the times on two clocks (at any instant)

• Computer clocks use crystal-based clocks that are subject to physical variations

– Clock drift: they count time at different rates and so diverge (frequencies of oscillation differ)

– Clock drift rate: the difference per unit of time from some ideal reference clock

– Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).

– High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Coordinated Universal Time (UTC)

• UTC is an international standard for time keeping

– It is based on atomic time, but occasionally adjusted to astronomical time

– International Atomic Time is based on very accurate physical clocks (drift rate 10-13)

• It is broadcast from radio stations on land and satellite (e.g.GPS)

• Computers with receivers can synchronize their clocks with these timing signals (by requesting

time from GPS/UTC source)

– Signals from land-based stations are accurate to about 0.1-10 millisecond

– Signals from GPS are accurate to about 1 microsecond

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

11.3 Synchronizing physical clocks

Two models of synchronization

• External synchronization: a computer‘s clock Ci is synchronized with an external authoritative

time source S, so that:

– |S(t) - Ci(t)| < D for i = 1, 2, …N over an interval, I of real time

– The clocks Ci are accurate to within the bound D.

• Internal synchronization: the clocks of a pair of computers are synchronized with one another

so that:

– | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval, I of real time

– The clocks Ci and Cj agree within the bound D.

Internally synchronized clocks are not necessarily externally synchronized, as they may drift

collectively

– if the set of processes P is synchronized externally within a bound D, it is also internally

synchronized within bound 2D (worst case polarity)

Clock correctness

• Correct clock: a hardware clock H is said to be correct if its drift rate is within a bound ρ > 0

(e.g. 10-6 secs/ sec)

This means that the error in measuring the interval between real times t and

t’ is bounded:

– (1 - ρ) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + ρ) (t’ - t) (where t’>t)

– Which forbids jumps in time readings of hardware clocks

• Clock monotonicity: weaker condition of correctness – t' > t ⇒ C(t’) > C(t)

– e.g. required by Unix make

– A hardware clock that runs fast can achieve monotonicity by adjusting the values of αand β

such that Ci(t)= αHi(t) + β

• Faulty clock: a clock not keeping its correctness condition

– crash failure - a clock stops ticking

– arbitrary failure - any other failure

• e.g. jumps in time; Y2K bug

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

11.3.1 Synchronization in a synchronous system

A synchronous distributed system is one in which the following bounds are defined

– the time to execute each step of a process has known lower and upper bounds

– each message transmitted over a channel is received within a knownbounded time (min and

max)

– each process has a local clock whose drift rate from real time has a known bound

� Internal synchronization in a synchronous system

– One process p1 sends its local time t to process p2 in a message m

– p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m

– Ttrans is unknown but min ≤ Ttrans ≤ max

– uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2

11.3.2 Cristian‘s method for an asynchronous system

• A time server S receives signals from a UTC source

– Process p requests time in mr and receives t in mt from S

– p sets its clock to t + Tround/2

– Accuracy ± (Tround/2 - min) :

• because the earliest time S puts t in message mt is min after p sent mr

• the latest time was min before mt arrived at p

• the time by S‘s clock when mt arrives is in the range [t+min, t + Tround - min]

• the width of the range is Tround + 2min

11.3.3 The Berkeley algorithm

• Problem with Cristian‘s algorithm

– a single time server might fail, so they suggest the use of a group of

synchronized servers

– it does not deal with faulty servers

• Berkeley algorithm (also 1989)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

– An algorithm for internal synchronization of a group of computers

– A master polls to collect clock values from the others (slaves)

– The master uses round trip times to estimate the slaves‘ clock values

– It takes an average (eliminating any above some average round trip time

or with faulty clocks)

– It sends the required adjustment to the slaves (better than sending the

time which depends on the round trip time)

– Measurements

• 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

• If master fails, can elect a new master to take over (not in bounded time)

11.3.4 Network Time Protocol (NTP)

• A time service for the Internet - synchronizes clients to UTC

– Reliability from redundant paths, scalable, authenticates time sources

• Architecture

– Primary servers are connected to UTC sources

– Secondary servers are synchronized to primary servers

– Synchronization subnet - lowest level servers in users‘ computers

• strata: the hierarchy level

NTP - synchronization of servers

• The synchronization subnet can reconfigure if failures occur

– a primary that loses its UTC source can become a secondary

– a secondary that loses its primary can use another primary

• Modes of synchronization for NTP servers:

– Multicast

• A server within a high speed LAN multicasts time to others which set

clocks assuming some delay (not very accurate)

– Procedure call

• A server accepts requests from other computers (like Cristian‘s

algorithm)

• Higher accuracy. Useful if no hardware multicast.

– Symmetric

• Pairs of servers exchange messages containing time information

• Used where very high accuracies are needed (e.g. for higher levels)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Messages exchanged between a pair of NTP peers

• All modes use UDP

• Each message bears timestamps of recent events:

– Local times of Send and Receive of previous message

– Local times of Send of current message

• Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)

• In symmetric mode there can be a non-negligible delay between messages

Accuracy of NTP

• Estimations of clock offset and message delay

– For each pair of messages between two servers, NTP estimates an offset oi (between the two

clocks) and a delay di (total time for the two messages, which take t and t‘)

Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t‘ - o

– This gives us (by adding the equations) : di = t + t‘ = Ti-2 - Ti-3 + Ti - Ti-1

– Also (by subtracting the equations)

o = oi + (t‘ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

– Using the fact that t, t‘>0 it can be shown that

oi - di /2 ≤ o ≤ oi + di /2 .

• Thus oi is an estimate of the offset and di is a measure of the accuracy

• Data filtering

– NTP servers filter pairs <oi, di>, estimating reliability from variation (dispersions), allowing

them to select peers; and synchronization based on the lowest dispersion or min di ok

• A relatively high filter dispersion represents relatively unreliable data

– Accuracy of tens of milliseconds over Internet paths (1 ms on LANs)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

11.4 Logical time and logical clocks

• Instead of synchronizing clocks, event ordering can be used

1. If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the order

observed by pi, that is order →i

2. when a message, m is sent between two processes, send(m) happened before receive(m)

• Lamport[1978] generalized these two relationships into the

happened-before relation: e →i e'

– HB1: if e →i e' in process pi, then e → e'

– HB2: for any message m, send(m) → receive(m)

– HB3: if e → e' and e' → e'', then e → e''

Lamport‘s logical clocks

• Each process pi has a logical clock Li

– a monotonically increasing software counter

– not related to a physical clock

• Apply Lamport timestamps to events with happened-before relation

– LC1: Li is incremented by 1 before each event at process pi

– LC2:

(a) when process pi sends message m, it piggybacks t = Li

(b) when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before

timestamping the event receive (m)

• e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Totally ordered logical clocks

• Some pairs of distinct events, generated by different processes, may have numerically identical

Lamport timestamps

– Different processes may have same Lamport time

• Totally ordered logical clocks

– If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj with

local timestamp Tj

– Define global logical timestamps for the events to be (Ti, i) and (Tj, j)

– Define (Ti, i) < (Tj, j) iff

• Ti < Tj or

• Ti = Tj and i < j

– No general physical significance since process identifiers are arbitrary

Vector clocks

• Shortcoming of Lamport clocks:

L(e) < L(e') doesn't imply e → e'

• Vector clock: an array of N integers for a system of N processes

– Each process keeps its own vector clock Vi to timestamp local events

– Piggyback vector timestamps on messages

• Rules for updating vector clocks:

– Vi[i]] is the number of events that pi has timestamped

– Viji] (j≠ i) is the number of events at pj that pi has been affected by

VC1: Initially, Vi[j] := 0 for pi, j=1.. N (N processes)

VC2: before pi timestamps an event, Vi[i] := Vi[i]+1

VC3: pi piggybacks t = Vi on every message it sends

VC4: when pi receives a timestamp t, it sets Vi[j] := max(Vi[j] , t[j]) for

j=1..N (merge operation)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

• Compare vector timestamps

– V=V‘ iff V[j] = V‘[j] for j=1..N

– V>=V‘ iff V[j] <= V‘[j] for j=1..N

– V<V‘ iff V<= V‘ ^ V!=V‘

• Figure 11.7 shows

– a→f since V(a) < V(f)

– c || e since neither V(c) <= V(e) nor V(e) <= V(c)

11.5 Global states

• How do we find out if a particular property is true in a distributed system? For examples, we

will look at:

– Distributed Garbage Collection

– Deadlock Detection

– Termination Detection

– Debugging

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Distributed Garbage Collection

• Objects are identified as garbage when there are no longer any references to them in the system

• Garbage collection reclaims memory used by those objects

• In figure 11.8a, process p2 has two objects that do not have any references to other objects, but

one object does have a reference to a message in transit. It is not garbage, but the other p2 object

is

• Thus we must consider communication channels as well as object references to determine

unreferenced objects

Deadlock Detection

• A distributed deadlock occurs when each of a collection of processes waits for another process

to send it a message, and there is a cycle in the graph of the waits-for relationship

• In figure 11.8b, both p1 and p2 wait for a message from the other, so both are blocked and the

system cannot continue

Termination Detection

• It is difficult to tell whether a distributed algorithm has terminated. It is not enough to detect

whether each process has halted

• In figure 11.8c, both processes are in passive mode, but there is an activation request in the

network

• Termination detection examines multiple states like deadlock detection, except that a deadlock

may affect only a portion of the processes involved, while termination detection must ensure that

all of the processes have completed

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Distributed Debugging

• Distributed processes are complex to debug. One of many possible problems is that consistency

restraints must be evaluated for simultaneous attribute values in multiple processes at different

instants of time.

• All four of the distributed problems discussed in this section have particular solutions, but all of

them also illustrate the need to observe global states. We will now look at a general approach to

observing global states.

• Without global time identified by perfectly synchronized clocks, the ability to identify

successive states in an individual process does not translate into the ability to identify successive

states in distributed processes

• We can assemble meaningful global states from local states recorded at different local times in

many circumstances, but must do so carefully and recognize limits to our capabilities

• A general system P of N processes pi (i=1..N)

– pi‘s history: history(pi)=hi=<ei0, ei1, ei2, …>

– finite prefix of pi‘s history: hi

k= <ei0, ei1, ei2, …, eik>

– state of pi immediately before the kth event occurs: sik

– global history H=h1 U h2 U…U hN

– A cut of the system‘s execution is a subset of its global history that is a union of prefix of

process histories C=h1c1 U h2c2 U…U hNcN

 The following figure gives an example of an inconsistent cutic and a consistent cutcc. The

distinguishing characteristic is that

– cutic includes the receipt of message m1 but not the sending of it, while

– cutcc includes the sending and receiving of m1 and cuts between the sending

and receipt of the message m2.

• A consistent cut cannot violate temporal causality by implying that a result occurred before its

cause, as in message m1 being received before the cut and being sent after the cut.

11.5.2 Global state predicates

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

• A Global State Predicate is a function that maps from the set of global process states to True or

False.

• Detecting a condition like deadlock or termination requires evaluating a Global State Predicate.

• A Global State Predicate is stable: once a system enters a state where it is true, such as

deadlock or termination, it remains true in all future states reachable from that state.

However, when we monitor or debug an application, we are interested in non stable predicates.

11.5.3 The Snapshot Algorithm

• Chandy and Lamport defined a snapshot algorithm to determine global states of distributed

systems

• The goal of a snapshot is to record a set of process and channel states (a snapshot) for a set of

processes so that, even if the combination of recorded states may not have occurred at the same

time, the recorded global state is consistent

– The algorithm records states locally; it does not gather global states at one site.

• The snapshot algorithm has some assumptions

– Neither channels nor processes fail

– Reliable communications ensure every message sent is received exactly once

– Channels are unidirectional

– Messages are received in FIFO order

– There is a path between any two processes

– Any process may initiate a global snapshot at any time

– Processes may continue to function normally during a snapshot

Snapshot Algorithm

• For each process, incoming channels are those which other processes can use to send it

messages. Outgoing channels are those it uses to send messages. Each process records its state

and for each incoming channel a set of messages sent to it. The process records for each channel,

any messages sent after it recorded its state and before the sender recorded its own state. This

approach can differentiate between states in terms of messages transmitted but not yet received

• The algorithm uses special marker messages, separate from other messages, which prompt the

receiver to save its own state if it has not done so and which can be used to determine which

messages to include in the channel state.

• The algorithm is determined by two rules

Figure 11.10 Chandy and Lamport‘s ‗snapshot‘ algorithm

Marker receiving rule for process pi On pi‘s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it records its process state now; records the state of c as the

empty set; turns on recording of messages arriving over other incoming channels;

else

pi records the state of c as the set of messages it has received over c since it saved its state.

end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c: pi sends one marker message over c

(before it sends any other message over c).

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Example

•Figure 11.11 shows an initial state for two processes.

•Figure 11.12 shows four successive states reached and identified after state transitions by the

two processes.

•Termination: it is assumed that all processes will have recorded their states and channel states a

finite time after some process initially records its state.

Characterizing a state

• A snapshot selects a consistent cut from the history of the execution. Therefore the state

recorded is consistent. This can be used in an ordering to include or exclude states that have or

have not recorded their state before the cut. This allows us to distinguish events as pre-snap or

post-snap events.

• The reachability of a state (figure 11.13) can be used to determine stable predicates.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Introduction

• Fundamental issue: for a set of processes, how to coordinate their actions or to agree on one or

more values?

– even no fixed master-slave relationship between the components

• Further issue: how to consider and deal with failures when designing algorithms

• Topics covered

– mutual exclusion

– how to elect one of a collection of processes to perform a special role

– multicast communication

– agreement problem: consensus and byzantine agreement

Failure Assumptions and Failure Detectors

• Failure assumptions of this chapter

– Reliable communication channels

– Processes only fail by crashing unless state otherwise

• Failure detector: object/code in a process that detects failures of other processes

• unreliable failure detector

– One of two values: unsuspected or suspected

• Evidence of possible failures

– Example: most practical systems

• Each process sends ―alive/I‘m here‖ message to everyone else

• If not receiving ―alive‖ message after timeout, it‘s suspected

– maybe function correctly, but network partitioned

• reliable failure detector

– One of two accurate values: unsuspected or failure – few practical systems

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

12.2 Distributed Mutual Exclusion

• Process coordination in a multitasking OS

– Race condition: several processes access and manipulate the same data concurrently and the

outcome of the execution depends on the particular order in which the access take place

– critical section: when one process is executing in a critical section, no other process is to be

allowed to execute in its critical section

– Mutual exclusion: If a process is executing in its critical section, then no other processes can

be executing in their critical sections

• Distributed mutual exclusion

– Provide critical region in a distributed environment

– message passing

for example, locking files, locked daemon in UNIX (NFS is stateless, no file-locking at the NFS

level)

Algorithms for mutual exclusion

• Problem: an asynchronous system of N processes

– processes don't fail

– message delivery is reliable; not share variables

– only one critical region

– application-level protocol: enter(), resourceAccesses(), exit()

• Requirements for mutual exclusion

– Essential

• [ME1] safety: only one process at a time

• [ME2] liveness: eventually enter or exit

– Additional

• [ME3] happened-before ordering: ordering of enter() is the same as HB ordering

• Performance evaluation

– overhead and bandwidth consumption: # of messages sent

– client delay incurred by a process at entry and exit

– throughput measured by synchronization delay: delay between one's exit and next's entry

A central server algorithm

• server keeps track of a token---permission to enter critical region

– a process requests the server for the token

– the server grants the token if it has the token

– a process can enter if it gets the token, otherwise waits

– when done, a process sends release and exits

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

A central server algorithm: discussion

• Properties

– safety, why?

– liveness, why?

– HB ordering not guaranteed, why?

• Performance

– enter overhead: two messages (request and grant)

– enter delay: time between request and grant

– exit overhead: one message (release)

– exit delay: none

– synchronization delay: between release and grant

– centralized server is the bottleneck

A ring-based algorithm

• Arrange processes in a logical ring to rotate a token

– Wait for the token if it requires to enter the critical section

– The ring could be unrelated to the physical configuration

• pi sends messages to p(i+1) mod N

– when a process requires to enter the critical section, waits for the token

– when a process holds the token

• If it requires to enter the critical section, it can enter

– when a process releases a token (exit), it sends to its neighbor

• If it doesn‘t, just immediately forwards the token to its neighbor

An algorithm using multicast and logical clocks

• Multicast a request message for the token (Ricart and Agrawala [1981])

– enter only if all the other processes reply

– totally-ordered timestamps: <T, pi >

• Each process keeps a state: RELEASED, HELD, WANTED

– if all have state = RELEASED, all reply, a process can hold the token and enter

– if a process has state = HELD, doesn't reply until it exits

– if more than one process has state = WANTED, process with the lowest timestamp will get all

N-1 replies first

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

An algorithm using multicast: discussion

•Properties

– safety, why?

– liveness, why?

– HB ordering, why?

• Performance

– bandwidth consumption: no token keeps circulating

– entry overhead: 2(N-1), why? [with multicast support: 1 + (N -1) = N]

– entry delay: delay between request and getting all replies

– exit overhead: 0 to N-1 messages

– exit delay: none

– synchronization delay: delay for 1 message (one last reply from the previous holder)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Maekawa‘s voting algorithm

•Observation: not all peers to grant it access

– Only obtain permission from subsets, overlapped by any two processes

•Maekawa‘s approach

– subsets Vi,Vj for process Pi, Pj

• Pi ∈Vi, Pj ∈ Vj

• Vi ∩ Vj ≠ ∅ , there is at least one common member

• subset |Vi|=K, to be fair, each process should have the same size

– Pi cannot enter the critical section until it has received all K reply messages

– Choose a subset

• Simple way (2√N): place processes in a √N by √N matrix and let Vi be the union of the row

and column containing Pi

• Optimal (√N): non-trivial to calculate (skim here)

– Deadlock-prone

• V1={P1, P2}, V2={P2, P3}, V3={P3, P1}

• If P1, P2 and P3 concurrently request entry to the critical section, then its possible that each

process has received one (itself) out of two replies, and none can proceed

• adapted and solved by [Saunders 1987]

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Elections

• Election: choosing a unique process for a particular role

– All the processes agree on the unique choice

– For example, server in dist. mutex

• Assumptions

– Each process can call only one election at a time

– multiple concurrent elections can be called by different processes

– Participant: engages in an election

• each process pi has variable electedi = ? (don't know) initially

• process with the largest identifier wins

– The (unique) identifier could be any useful value

• Properties

– [E1] electedi of a ―participant‖ process must be P (elected process=largestid) or ⊥

(undefined)

– [E2] liveness: all processes participate and eventually set electedi != ⊥ (or crash)

• Performance

– overhead (bandwidth consumption): # of messages

– turnaround time: # of messages to complete an election

A ring-based election algorithm

• Arrange processes in a logical ring

– pi sends messages to p(i+1) mod N

– It could be unrelated to the physical configuration

– Elect the coordinator with the largest id

– Assume no failures

• Initially, every process is a non-participant. Any process can call an election

– Marks itself as participant

– Places its id in an election message

– Sends the message to its neighbor

– Receiving an election message

• if id > myid, forward the msg, mark participant

• if id < myid

– non-participant: replace id with myid: forward the msg, mark participant

– participant: stop forwarding (why? Later, multiple elections)

• if id = myid, coordinator found, mark non-participant, electedi := id, send elected

message with myid

– Receiving an elected message

• id != myid, mark non-participant, electedi := id forward the msg

• if id = myid, stop forwarding

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Figure 12.7 A ring-based election in progress

• Receiving an election message:

– if id > myid, forward the msg, mark participant

– if id < myid

• non-participant: replace id with myid: forward the msg, mark participant

• participant: stop forwarding (why? Later, multiple elections)

– if id = myid, coordinator found, mark non-participant, electedi := id, send elected message with

myid

• Receiving an elected message: – id != myid, mark non-participant,

electedi := id forward the msg

– if id = myid, stop forwarding

A ring-based election algorithm: discussion

•Properties

– safety: only the process with the largest id can send an elected message

– liveness: every process in the ring eventually participates in the election; extra elections are

stopped

• Performance

– one election, best case, when?

• N election messages

• N elected messages

• turnaround: 2N messages

– one election, worst case, when?

• 2N - 1 election messages

• N elected messages

• turnaround: 3N - 1 messages

– can't tolerate failures, not very practical

The bully election algorithm

•Assumption

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

– Each process knows which processes have higher identifiers, and that it can communicate with

all such processes

•Compare with ring-based election

– Processes can crash and be detected by timeouts

• synchronous

• timeout T = 2Ttransmitting (max transmission delay) + Tprocessing (max processing delay)

•Three types of messages

– Election: announce an election

– Answer: in response to Election

– Coordinator: announce the identity of the elected process

The bully election algorithm: howto

• Start an election when detect the coordinator has failed or begin to replace the coordinator,

which has lower identifier

– Send an election message to all processes with higher id's and waits for answers (except the

failed coordinator/process)

• If no answers in time T

– Considers it is the coordinator

– sends coordinator message (with its id) to all processes with lower id's

• else

– waits for a coordinator message and starts an election if T‘ timeout

– To be a coordinator, it has to start an election

• A higher id process can replace the current coordinator (hence ―bully‖)

– The highest one directly sends a coordinator message to all process with lower identifiers

• Receiving an election message

– sends an answer message back

– starts an election if it hasn't started one—send election messages to all higher-id processes

(including the ―failed‖ coordinator—the coordinator might be up by now)

• Receiving a coordinator message

– set electedi to the new coordinator

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

The bully election algorithm: discussion

• Properties

– safety:

• a lower-id process always yields to a higher-id process

• However, it‘s guaranteed

– if processes that have crashed are replaced by processes with the same identifier since message

delivery order might not be guaranteed and

– failure detection might be unreliable

– liveness: all processes participate and know the coordinator at the end

• Performance

– best case: when?

• overhead: N-2 coordinator messages

• turnaround delay: no election/answer messages

– worst case: when?

• overhead:

• 1+ 2 + ...+ (N-2) + (N-2)= (N-1)(N-2)/2 + (N-2) election messages,

• 1+...+ (N-2) answer messages,

• N-2 coordinator messages,

• total: (N-1)(N-2) + 2(N-2) = (N+1)(N-2) = O(N2)

– turnaround delay: delay of election and answer messages

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Multicast Communication

• Group (multicast) communication: for each of a group of processes to receive copies of the

messages sent to the group, often with delivery guarantees

– The set of messages that every process of the group should receive

– On the delivery ordering across the group members

• Challenges

– Efficiency concerns include minimizing overhead activities and increasing throughput and

bandwidth utilization

– Delivery guarantees ensure that operations are completed

• Types of group

– Static or dynamic: whether joining or leaving is considered

– Closed or open

• A group is said to be closed if only members of the group can multicast to it. A process in a

closed group sends to itself any messages to the group

• A group is open if processes outside the group can send to it

Reliable Multicast

• Simple basic multicasting (B-multicast) is sending a message to every process that is a member

of a defined group

– B-multicast (g, m) for each process p ∈ group g, send (p, message m)

– On receive (m) at p: B-deliver (m) at p

• Reliable multicasting (R-multicast) requires these properties

– Integrity: a correct process sends a message to only a member of the group and does it only

once

– Validity: if a correct process sends a message, it will eventually be delivered

– Agreement: if a message is delivered to a correct process, all other correct processes in the

group will deliver it

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Implementing reliable R-multicast over B-multicast

– When a message is delivered, the receiving process multicasts it

– Duplicate messages are identified (possible by a sequence number) and not delivered

Types of message ordering

•Three types of message ordering

– FIFO (First-in, first-out) ordering: if a correct process delivers a message before another,

every correct process will deliver the first message before the other

– Casual ordering: any correct process that delivers the second message will deliver the previous

message first

– Total ordering: if a correct process delivers a message before another, any other correct

process that delivers the second message will deliver the first message first

•Note that

– FIFO ordering and casual ordering are only partial orders

– Not all messages are sent by the same sending process

– Some multicasts are concurrent, not able to be ordered by happened before

– Total order demands consistency, but not a particular order

Figure 12.12 Total, FIFO and causal ordering of multicast messages

Notice

• the consistent ordering of totally ordered messages T1 and T2,

• the FIFO-related messages F1 and F2 and

• the causally related messages C1 and C3 and

• the otherwise arbitrary delivery ordering of messages

Note that T1 and T2 are delivered in opposite order to the physical time of message creation

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Bulletin board example (FIFO ordering)

• A bulletin board such as Web Board at NJIT illustrates the desirability of consistency and FIFO

ordering. A user can best refer to preceding messages if they are delivered in order. Message 25

in Figure 12.13 refers to message 24, and message 27 refers to message 23.

• Note the further advantage that Web Board allows by permitting messages to begin threads by

replying to a particular message. Thus messages do not have to be displayed in the same order

they are delivered

Implementing total ordering

• The normal approach to total ordering is to assign totally ordered identifiers to multicast

messages, using the identifiers to make ordering decisions.

• One possible implementation is to use a sequencer process to assign identifiers. See Figure

12.14. A drawback of this is that the sequencer can become a bottleneck.

• An alternative is to have the processes collectively agree on identifiers. A simple algorithm is

shown in Figure 12.15.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Figure 12.15 The ISIS algorithm for total ordering

Each process q in group g keeps

• Aq g: the largest agreed sequence number it has observed so far for the group g

• Pq g: its own largest proposed sequence number

Algorithm for process p to multicast a message m to group g

1. B-multicasts <m, i> to g, where i is a unique identifier for m

2. Each process q replies to the sender p with a proposal for the message‘s agreed sequence

number of Pq g :=Max(Aq g, Pq g)+1

3. Collects all the proposed sequence numbers and selects the largest one a as the next agreed

sequence number. It then B-multicasts <i, a> to g.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

4. Each process q in g sets Aq g := Max(Aq g, a) and attaches a to the message identified by i

Implementing casual ordering

• Causal ordering using vector timestamps (Figure 12.16)

– Only orders multicasts, and ignores one-to-one messages between processes

– Each process updates its vector timestamp before delivering a message to maintain the count of

precedent messages

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Lecture Notes

Consensus and related problems

• Problems of agreement

– For processes to agree on a value (consensus) after one or more of the processes has proposed

what that value should be

– Covered topics: byzantine generals, interactive consistency, totally ordered multicast

• The byzantine generals problem: a decision whether multiple armies should attack or retreat,

assuming that united action will be more successful than some attacking and some retreating

• Another example might be space ship controllers deciding whether to proceed or abort. Failure

handling during consensus is a key concern

• Assumptions

– communication (by message passing) is reliable

– processes may fail

• Sometimes up to f of the N processes are faulty

Consensus Process

1. Each process pi begins in an undecided state and proposes a single value vi, drawn from a set

D (i=1…N)

2. Processes communicate with each other, exchanging values

3. Each process then sets the value of a decision variable di and enters the decided state

Requirements for Consensus

• Three requirements of a consensus algorithm

– Termination: Eventually every correct process sets its decision variable

– Agreement: The decision value of all correct processes is the same: if pi and pj are correct and

have entered the decided state, then di=dj

(i,j=1,2, …, N)

– Integrity: If the correct processes all proposed the same value, then any correct process in the

decided state has chosen that value

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

The byzantine generals problem

• Problem description

– Three or more generals must agree to attack or to retreat

– One general, the commander, issues the order

– Other generals, the lieutenants, must decide to attack or retreat

– One or more generals may be treacherous

• A treacherous general tells one general to attack and another to retreat

• Difference from consensus is that a single process supplies the value to agree on

• Requirements

– Termination: eventually each correct process sets its decision variable

– Agreement: the decision variable of all correct processes is the same

– Integrity: if the commander is correct, then all correct processes agree on the value that the

commander has proposed (but the commander need not be correct)

The interactive consistency problem

• Interactive consistency: all correct processes agree on a vector of values, one for each process.

This is called the decision vector

– Another variant of consensus

• Requirements

– Termination: eventually each correct process sets its decision variable

– Agreement: the decision vector of all correct processes is the same

– Integrity: if any process is correct, then all correct processes decide the correct value for that

process

Relating consensus to other problems

• Consensus (C), Byzantine Generals (BG), and Interactive Consensus (IC) are all problems

concerned with making decisions in the context of arbitrary or crash failures

• We can sometimes generate solutions for one problem in terms of another. For example

– We can derive IC from BG by running BG N times, once for each process with that process

acting as commander

– We can derive C from IC by running IC to produce a vector of values at each process, then

applying a function to the vector‘s values to derive a single value.

– We can derive BG from C by

• Commander sends proposed value to itself and each remaining process

• All processes run C with received values

• They derive BG from the vector of C values

Consensus in a Synchronous System

• Up to f processes may have crash failures, all failures occurring during f+1 rounds.

During each round, each of the correct processes multicasts the values among themselves

• The algorithm guarantees all surviving correct processes are in a position to agree

• Note: any process with f failures will require at least f+1 rounds to agree

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Limits for solutions to Byzantine Generals

• Some cases of the Byzantine Generals problems have no solutions

– Lamport et al found that if there are only 3 processes, there is no solution

– Pease et al found that if the total number of processes is less than three times the number of

failures plus one, there is no solution

• Thus there is a solution with 4 processes and 1 failure, if there are two rounds

– In the first, the commander sends the values

– while in the second, each lieutenant sends the values it received

Figure 12.19 Three Byzantine generals

Figure 12.20 Four Byzantine generals

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-Distributed System

Asynchronous Systems

• All solutions to consistency and Byzantine generals problems are limited to synchronous

systems

• Fischer et al found that there are no solutions in an asynchronous system with even one failure

• This impossibility is circumvented by masking faults or using failure detection

• There is also a partial solution, assuming an adversary process, based on introducing random

values in the process to prevent an effective thwarting strategy. This does not always reach

consensus

www.Vidyarthiplus.com

www.Vidyarthiplus.com

