
DISTRIBUTED SYSTEMSCS2056

CORBA services.-CORBA RMI-Introduction-CORBA Case Study

consistency models.
Other -consistency and Ivy case study Release consistency and Munin case study

Sequential -Design and implementation issues-Introduction-Distributed Shared Memory
UNIT V

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 1

DISTRIBUTED SHARED MEMORY

Distributed shared memory (DSM) is an abstraction used for sharing data between computers

that do not share physical memory. Processes access DSM by reads and updates to what appears

to be ordinary memory within their address space. However, an underlying runtime system

ensures transparently that processes executing at different computers observe the updates made

by one another.

The main point of DSM is that it spares the programmer the concerns of message passing when

writing applications that might otherwise have to use it. DSM is primarily a tool for parallel

applications or for any distributed application or group of applications in which individual shared

data items can be accessed directly. DSM is in general less appropriate in client-server systems,

where clients normally view server-held resources as abstract data and access them by request

(for reasons of modularity and protection).

Message passing cannot be avoided altogether in a distributed system: in the absence of

physically shared memory, the DSM runtime support has to send updates in messages between

computers. DSM systems manage replicated data: each computer has a local copy of recently

accessed data items stored in DSM, for speed of access.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 2

In distributed memory multiprocessors and clusters of off-the-shelf computing components (see

Section 6.3), the processors do not share memory but are connected by a very high-speed

network. These systems, like general-purpose distributed systems, can scale to much greater

numbers of processors than a shared-memory multiprocessor’s 64 or so. A central question that

has been pursued by the DSM and multiprocessor research communities is whether the

investment in knowledge of shared memory algorithms and the associated software can be

directly transferred to a more scalable distributed memory architecture.

Message passing versus DSM

As a communication mechanism, DSM is comparable with message passing rather than

with request-reply-based communication, since its application to parallel processing, in

particular, entails the use of asynchronous communication. The DSM and message

passing approaches to programming can be contrasted as follows:

Programming model:

Under the message passing model, variables have to be marshalled from one process, transmitted

and unmarshalled into other variables at the receiving process. By contrast, with shared memory

the processes involved share variables directly, so no marshalling is necessary – even of pointers

to shared variables – and thus no separate communication operations are necessary.

Efficiency :

Experiments show that certain parallel programs developed for DSM can be made to perform

about as well as functionally equivalent programs written for message passing platforms on the

same hardware – at least in the case of relatively small numbers of computers (ten or so).

However, this result cannot be generalized. The performance of a program based on DSM

depends upon many factors, as we shall discuss below – particularly the pattern of data sharing.

Implementation approaches to DSM

Distributed shared memory is implemented using one or a combination of specialized hardware,

conventional paged virtual memory or middleware:

Hardware:

Shared-memory multiprocessor architectures based on a NUMA architecture rely on specialized

hardware to provide the processors with a consistent view of shared memory. They handle

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 3

memory LOAD and STORE instructions by communicating with remote memory and cache

modules as necessary to store and retrieve data.

Paged virtual memory:

Many systems, including Ivy and Mether , implement DSM as a region of virtual memory

occupying the same address range in the address space of every participating process.

#include "world.h"

struct shared { int a, b; };

Program Writer:

main()

{

struct shared *p;

methersetup(); /* Initialize the Mether runtime */

p = (struct shared *)METHERBASE;

/* overlay structure on METHER segment */

p->a = p->b = 0; /* initialize fields to zero */

while(TRUE){ /* continuously update structure fields */

p –>a = p –>a + 1;

p –>b = p –>b - 1;

}

}

Program Reader:

main()

{

struct shared *p;

methersetup();

p = (struct shared *)METHERBASE;

while(TRUE){ /* read the fields once every second */

printf("a = %d, b = %d\n", p –>a, p –>b);

sleep(1);

}

}

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 4

Middleware:

Some languages such as Orca, support forms of DSM without any hardware or paging support,

in a platform-neutral way. In this type of implementation, sharing is implemented by

communication between instances of the user-level support layer in clients and servers.

Processes make calls to this layer when they access data items in DSM. The instances of this

layer at the different computers access local data items and communicate as necessary to

maintain consistency.

Design and implementation issues

The synchronization model used to access DSM consistently at the application level; the DSM

consistency model, which governs the consistency of data values accessed from different

computers; the update options for communicating written values between computers; the

granularity of sharing in a DSM implementation; and the problem of thrashing.

Structure

A DSM system is just such a replication system. Each application process is presented with some

abstraction of a collection of objects, but in this case the ‘collection’ looks more or less like

memory. That is, the objects can be addressed in some fashion or other. Different approaches to

DSM vary in what they consider to be an ‘object’ and in how objects are addressed. We consider

three approaches, which view DSM as being composed respectively of contiguous bytes,

language-level objects or immutable data items.

Byte-oriented

This type of DSM is accessed as ordinary virtual memory – a contiguous array of bytes. It is the

view illustrated above by the Mether system. It is also the view of many other DSM systems,

including Ivy.It allows applications (and language implementations) to impose whatever data

structures they want on the shared memory. The shared objects are directly addressible memory

locations (in practice, the shared locations may be multi-byte words rather than individual bytes).

The only operations upon those objects are read (or LOAD) and write (or STORE). If x and y are

two memory locations, then we denote instances of these operations as follows:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 5

Object-oriented

The shared memory is structured as a collection of language-level objects with higher-level

semantics than simple read / write variables, such as stacks and dictionaries. The contents of the

shared memory are changed only by invocations upon these objects and never by direct access to

their member variables. An advantage of viewing memory in this way is that object semantics

can be utilized when enforcing consistency.

Immutable data

When reading or taking a tuple from tuple space, a process provides a tuple specification and the

tuple space returns any tuple that matches that specification – this is a type of associative

addressing. To enable processes to synchronize their activities, the read and take operations both

block until there is a matching tuple in the tuple space.

Synchronization model

Many applications apply constraints concerning the values stored in shared memory. This is as

true of applications based on DSM as it is of applications written for sharedmemory

multiprocessors (or indeed for any concurrent programs that share data, such as operating system

kernels and multi-threaded servers). For example, if a and b are two variables stored in DSM,

then a constraint might be that a=b always. If two or moreprocesses execute the following code:

a:= a + 1;

b := b + 1;

then an inconsistency may arise. Suppose a and b are initially zero and that process 1gets as far

as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1.

Consistency model

The local replica manager is implemented by a combination of middleware (the DSM runtime

layer in each process) and the kernel. It is usual for middleware to perform the majority of DSM

processing. Even in a page-based DSM implementation, the kernel usually provides only basic

page mapping, page-fault handling and communication mechanisms and middleware is

responsible for implementing the page-sharing policies. If DSM segments are persistent, then

one or more storage servers (for example, file servers) will also act as replica managers.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 6

Sequential consistency

A DSM system is said to be sequentially consistent if for any execution there is some

interleaving of the series of operations issued by all the processes that satisfies the following two

criteria:

SC1: The interleaved sequence of operations is such that if R(x) a occurs in the

sequence, then either the last write operation that occurs before it in the interleaved sequence is

W(x) a, or no write operation occurs before it and a is the initial value of x.

SC2: The order of operations in the interleaving is consistent with the program order in

which each individual client executed them.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 7

Coherence

Coherence is an example of a weaker form of consistency. Under coherence, every process

agrees on the order of write operations to the same location, but they do not necessarily agree on

the ordering of write operations to different locations. We can think of coherence as sequential

consistency on a locationby- location basis. Coherent DSM can be implemented by taking a

protocol for implementing sequential consistency and applying it separately to each unit of

replicated data – for example, each page.

Weak consistency

This model exploits knowledge of synchronization operations in order to relax memory

consistency, while appearing to the programmer to implement sequential consistency (at least,

under certain conditions that are beyond the scope of this book). For example, if the programmer

uses a lock to implement a critical section, then a DSM system can assume that no other process

may access the data items accessed under mutual exclusion within it. It is therefore redundant for

the DSM system to propagate updates to these items until the process leaves the critical section.

While items are left with ‘inconsistent’ values some of the time, they are not accessed at those

points; the execution appears to be sequentially consistent.

Update options

Two main implementation choices have been devised for propagating updates made by one

process to the others: write-update and write-invalidate. These are applicable to a variety of

DSM consistency models, including sequential consistency. In outline, the options are as

follows:

Write-update: The updates made by a process are made locally and multicast to all other replica

managers possessing a copy of the data item, which immediately modify the data read by local

processes. Processes read the local copies of data items, without the need for communication. In

addition to allowing multiple readers, several processes may write the same data item at the same

time; this is known as multiple-reader/multiple-writer sharing.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 8

Write-invalidate: This is commonly implemented in the form of multiple-reader/ single-writer

sharing. At any time, a data item may either be accessed in read-only mode by one or more

processes, or it may be read and written by a single process. An item that is currently accessed in

read-only mode can be copied indefinitely to other processes. When a process attempts to write

to it, a multicast message is first sent to all other copies to invalidate them and this is

acknowledged before the write can take place; the other processes are thereby prevented from

reading stale data (that is, data that are not up to date). Any processes attempting to access the

data item are blocked if a writer exists.

Granularity

An issue that is related to the structure of DSM is the granularity of sharing. Conceptually, all

processes share the entire contents of a DSM. As programs sharing DSM execute, however, only

certain parts of the data are actually shared and then only for certain times during the execution.

It would clearly be very wasteful for the DSM implementation always to transmit the entire

contents of DSM as processes access and update it.

Thrashing

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to occur

where the DSM runtime spends an inordinate amount of time invalidating and transferring

shared data compared with the time spent by application processes doing useful work. It occurs

when several processes compete for the same data item, or for falsely shared data items.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 9

SEQUENTIAL CONSISTENCY AND IVY CASE STUDY

The system model

The basic model to be considered is one in which a collection of processes shares a segment of

DSM. The segment is mapped to the same range of addresses in each process, so that meaningful

pointer values can be stored in the segment. The processes execute at computers equipped with a

paged memory management unit. We shall assume that there is only one process per computer

that accesses the DSM segment. There may in reality be several such processes at a computer.

However, these could then share DSM pages directly (the same page frame can be used in the

page tables used by the different processes). The only complication would be to coordinate

fetching and propagating updates to a page when two or more local processes access it. This

description ignores such details.

Paging is transparent to the application components within processes; they can logically both

read and write any data in DSM. However, the DSM runtime restricts page access permissions in

order to maintain sequential consistency when processing reads and writes. Paged memory

management units allow the access permissions to a data page to be set to none, read-only or

read-write.

The problem of write-update

The previous section outlined the general implementation alternatives of write-update and write-

invalidation. In practice, if the DSM is page-based, then write-update is used only if writes can

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 10

be buffered. This is because standard page-fault handling is unsuited to the task of processing

every single write update to a page.

Write invalidation

Invalidation-based algorithms use page protection to enforce consistent data sharing. When a

process is updating a page, it has read and write permissions locally; all other processes have no

access permissions to the page. When one or more processes are reading the page, they have

read-only permission; all other processes have no access permissions (although they may acquire

read permissions). No other combinations are possible.

Invalidation protocols

Two important problems remain to be addressed in a protocol to implement the invalidation

scheme:

1. How to locate owner(p) for a given page p.

2. Where to store copyset(p).

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 11

For Ivy, Li and Hudak [1989] describe several architectures and protocols that take varying

approaches to these problems. The simplest we shall describe is their improved centralized

manager algorithm. In it, a single server called a manager is used to store the location (transport

address) of owner(p) for every page p. The manager could be one of the processes running the

application, or it could be any other process. In this algorithm, the set copyset(p) is stored at

owner(p). That is, the identifiers and transport addresses of the members of copyset(p) are stored.

Using multicast to locate the owner

Multicast can be used to eliminate the manager completely. When a process faults, it multicasts

its page request to all the other processes. Only the process that owns the page replies. Care must

be taken to ensure correct behaviour if two clients request the same page at more or less the same

time: each client must obtain the page eventually, even if its request is multicast during transfer

of ownership.

A dynamic distributed manager algorithm

The owner of a page is located by following chains of hints that are set up as ownership of the

page is transferred from computer to computer. The length of the chain – that is, the number of

forwarding messages necessary to locate the owner – threatens to increase indefinitely. The

algorithm overcomes this by updating the hints as more upto- date values become available.

Hints are updated and requests are forwarded as follows:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 12

 When a process transfers ownership of page p to another process, it updates

probOwner(p) to be the recipient.

 When a process handles an invalidation request for a page p, it updates probOwner(p) to

be the requester.

 When a process that has requested read access to a page p receives it, it updates

probOwner(p) to be the provider.

 When a process receives a request for a page p that it does not own, it forwards the

request to probOwner(p) and resets probOwner(p) to be the requester.

The first three updates follow simply from the protocol for transferring page ownership and

providing read-only copies. The rationale for the update when forwarding requests is that, for

write requests, the requester will soon be the owner, even though it is not currently. In fact, in Li

and Hudak’s algorithm, assumed here, the probOwner update is made whether the request is for

read access or write access.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 13

Thrashing

It can be argued that it is the programmer’s responsibility to avoid thrashing. The programmer

could annotate data items in order to assist the DSM runtime in minimizing page copying and

ownership transfers. The latter approach is discussed in the next section in the context of the

Munin DSM system.

RELEASE CONSISTENCY AND MUNIN CASE STUDY

Release consistency was introduced with the Dash multiprocessor, which implements DSM in

hardware, primarily using a write-invalidation protocol [Lenoski etal. 1992]. Munin and

Treadmarks [Keleher et al. 1992] have adopted a software implementation of it. Release

consistency is weaker than sequential consistency and cheaper to implement, but it has

reasonable semantics that are tractable to programmers.

The idea of release consistency is to reduce DSM overheads by exploiting the fact that

programmers use synchronization objects such as semaphores, locks and barriers. A DSM

implementation can use knowledge of accesses to these objects to allow memory to become

inconsistent at certain points, while the use of synchronization objects nonetheless preserves

application-level consistency.

Memory accesses

In order to understand release consistency – or any other memory model that takes

synchronization into account – we begin by categorizing memory accesses according to their

role, if any, in synchronization. Furthermore, we shall discuss how memory accesses may be

performed asynchronously to gain performance and give a simple operational model of how

memory accesses take effect.

As we said above, DSM implementations on general-purpose distributed systems may use

message passing rather than shared variables to implement synchronization, for reasons of

efficiency.

acquireLock(var int lock): // lock is passed by-reference

while (testAndSet(lock) = 1)

skip;

releaseLock(var int lock): // lock is passed by-reference

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 14

lock := 0;

Types of memory access

The main distinction is between competing accesses and noncompeting (ordinary) accesses. Two

accesses are competing if:

 they may occur concurrently (there is no enforced ordering between them) and

 at least one is a write.

So two read operations can never be competing; a read and a write to the same location made by

two processes that synchronize between the operations (and so order them) are non-competing.

We further divide competing accesses into synchronization and nonsynchronization accesses:

 synchronization accesses are read or write operations that contribute to synchronization;

 non-synchronization accesses are read or write operations that are concurrent but that do

not contribute to synchronization.

Performing asynchronous operations

In view of the asynchronous operation that we have outlined, we distinguish between the point at

which a read or write operation is issued – when the process first commences execution of the

operation – and the point when the instruction is performed or completed.

We shall assume that our DSM is at least coherent. It means that every process agrees on the

order of write operations to the same location. Given this assumption, we may speak

unambiguously of the ordering of write operations to a given location.

Release consistency

The requirements that we wish to meet are:

 to preserve the synchronization semantics of objects such as locks and barriers;

 to gain performance, we allow a degree of asynchronicity for memory operations;

 to constrain the overlap between memory accesses in order to guarantee executions that

provide the equivalent of sequential consistency.

Munin

The Munin DSM design [Carter et al. 1991] attempts to improve the efficiency of DSM by

implementing the release consistency model. Furthermore, Munin allows programmers to

annotate their data items according to the way in which they are shared, so that optimizations can

be made in the update options selected for maintaining consistency. It is implemented upon the V

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 15

kernel [Cheriton and Zwaenepoel 1985], which was one of the first kernels to allow user-level

threads to handle page faults and manipulate page tables.

The following points apply to Munin’s implementation of release consistency:

 Munin sends update or invalidation information as soon as a lock is released.

 The programmer can make annotations that associate a lock with particular data items. In

this case, the DSM runtime can propagate relevant updates in the same message that

transfers the lock to a waiting process – ensuring that the lock’s recipient has copies of

the data it needs before it accesses them.

Sharing annotations

Munin implements a variety of consistency protocols, which are applied at the granularity of

individual data items. The protocols are parameterized according to the following options:

• whether to use a write-update or write-invalidate protocol;

• whether several replicas of a modifiable data item may exist simultaneously;

• whether or not to delay updates or invalidations (for example, under release consistency);

• whether the item has a fixed owner, to which all updates must be sent;

• whether the same data item may be modified concurrently by several writers;

• whether the data item is shared by a fixed set of processes;

• whether the data item may be modified.

Read-only: No updates may be made after initialization and the item may be freely copied.

Migratory: Processes typically take turns in making several accesses to the item, at least one of

which is an update. For example, the item might be accessed within a critical section. Munin

always gives both read and write access together to such an object, even when a process takes a

read fault. This saves subsequent write-fault processing.

Write-shared: Several processes update the same data item (for example, an array) concurrently,

but this annotation is a declaration from the programmer that the processes do not update the

same parts of it. This means that Munin can avoid false sharing but must propagate only those

words in the data item that are actually updated at each process. To do this, Munin makes a copy

of a page (inside a write-fault handler) just before it is updated locally. Only the differences

between the two versions are sent in an update.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 16

Producer-consumer: The data object is shared by a fixed set of processes, only one of which

updates it. As we explained when discussing thrashing above, a writeupdate protocol is most

suitable here. Moreover, updates may be delayed under the model of release consistency,

assuming that the processes use locks to synchronize their accesses.

Reduction: The data item is always modified by being locked, read, updated and unlocked. An

example of this is a global minimum in a parallel computation, which must be fetched and

modified atomically if it is greater than the local minimum. These items are stored at a fixed

owner. Updates are sent to the owner, which propagates them.

Result: Several processes update different words within the data item; a single process reads the

whole item. For example, different ‘worker’ processes might fill in different elements of an

array, which is then processed by a ‘master’ process. The point here is that the updates need only

be propagated to the master and not to the workers (as would occur under the ‘write-shared’

annotation just described).

Conventional: The data item is managed under an invalidation protocol similar to that described

in the previous section. No process may therefore read a stale version of the data item.

OTHER CONSISTENCY MODELS

Models of memory consistency can be divided into uniform models, which do not distinguish

between types of memory access, and hybrid models, which do distinguish between ordinary and

synchronization accesses (as well as other types of access).

Other uniform consistency models include:

Causal consistency: Reads and writes may be related by the happened-before relationship . This

is defined to hold between memory operations when either (a) they are made by the same

process; (b) a process reads a value written by another process; or (c) there exists a sequence of

such operations linking the two operations. The model’s constraint is that the value returned by a

read must be consistent with the happened-before relationship.

Processor consistency: The memory is both coherent and adheres to the pipelined RAM model

(see below). The simplest way to think of processor consistency is that the memory is coherent

and that all processes agree on the ordering of any two write accesses made by the same process

– that is, they agree with its program order.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 17

Pipelined RAM: All processors agree on the order of writes issued by any given processor

In addition to release consistency, hybrid models include:

Entry consistency: Entry consistency was proposed for the Midway DSM system. In this model,

every shared variable is bound to a synchronization object such as a lock, which governs access

to that variable. Any process that first acquires the lock is guaranteed to read the latest value of

the variable. A process wishing to write the variable must first obtain the corresponding lock in

‘exclusive’ mode – making it the only process able to access the variable.

Several processes may read the variable concurrently by holding the lock in nonexclusive mode.

Midway avoids the tendency to false sharing in release consistency, but at the expense of

increased programming complexity.

Scope consistency: This memory model [Iftode et al. 1996] attempts to simplify the

programming model of entry consistency. In scope consistency, variables are associated with

synchronization objects largely automatically instead of relying on the programmer to associate

locks with variables explicitly. For example, the system can monitor which variables are updated

in a critical section.

Weak consistency: Weak consistency [Dubois et al. 1988] does not distinguish between acquire

and release synchronization accesses. One of its guarantees is that all previous ordinary accesses

complete before either type of synchronization access completes.

Common Object Request Broker Architecture (CORBA)

CORBA is a middeware design that allows application programs to communicate with

one another irrespective of their programming languages, their hardware and software platforms,

the networks they communicate over and their implementors.

Applications are built from CORBA objects, which implement interfaces defined in

CORBA’s interface definition language, IDL. Clients access the methods in the IDL interfaces of

CORBA objects by means of RMI. The middleware component that supports RMI is called the

Object Request Broker or ORB.

Introduction

The OMG (Object Management Group) was formed in 1989 with a view to encouraging the

adoption of distributed object systems in order to gain the benefits of object-oriented

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 18

programming for software development and to make use of distributed systems, which were

becoming widespread. To achieve its aims, the OMG advocated the use of open systems based

on standard object-oriented interfaces. These systems would be built from heterogeneous

hardware, computer networks, operating systems and programming languages.

An important motivation was to allow distributed objects to be implemented in any programming

language and to be able to communicate with one another. They therefore designed an interface

language that was independent of any specific implementation language.

They introduced a metaphor, the object request broker(or ORB), whose role is to help a client to

invoke a method on an object. This role involves locating the object, activating the object if

necessary and then communicating the client’s request to the object, which carries it out and

replies.

In 1991, a specification for an object request broker architecture known as CORBA (Common

Object Request Broker Architecture) was agreed by a group of companies. This was followed in

1996 by the CORBA 2.0 specification, which defined standards enabling implementations made

by different developers to communicate with one another. These standards are called the General

Inter-ORB protocol or GIOP. It is intended that GIOP can be implemented over any transport

layer with connections. The implementation of GIOP for the Internet uses the TCP protocol and

is called the Internet Inter-ORB Protocol or IIOP [OMG 2004a]. CORBA 3 first appeared in late

1999 and a component model has been added recently.

The main components of CORBA’s language-independent RMI framework are the following:

• An interface definition language known as IDL,

• The GIOP defines an external data representation, called CDR. It also defines specific

formats for the messages in a request-reply protocol. In addition to request and reply

messages, it specifies messages for enquiring about the location of an object, for

cancelling requests and for reporting errors.

• The IIOP, an implementation of GIOP defines a standard form for remote object

references,

CORBA RMI

Programming in a multi-language RMI system such as CORBA RMI requires more of the

programmer than programming in a single-language RMI system such as Java RMI.

The following new concepts need to be learned:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 19

• the object model offered by CORBA;

• the interface definition language and its mapping onto the implementation language.

CORBA's object model

The CORBA object model is similar to the one described in , but clients are not necessarily

objects – a client can be any program that sends request messages to remote objects and receives

replies. The term CORBA object is used to refer to remote objects. Thus, a CORBA object

implements an IDL interface, has a remote object reference and is able to respond to invocations

of methods in its IDL interface. A CORBA object can be implemented by a language that is not

objectoriented, for example without the concept of class. Since implementation languages will

have different notions of class or even none at all, the class concept does not exist in CORBA.

Therefore classes cannot be defined in CORBA IDL, which means that instances of classes

cannot be passed as arguments.

CORBA IDL

These are preceded by definitions of two structs, which are used as parameter types in defining

the methods. Note in particular that GraphicalObject is defined as a struct , whereas it was a

class in the Java RMI example. A component whose type is a struct has a set of fields containing

values of various types like the instance variables of an object, but it has no methods.

Parameters and results in CORBA IDL:

Each parameter is marked as being for input or output or both, using the keywords in , out or

inout illustrates a simple example of the use of those keywords

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 20

The semantics of parameter passing are as follows:

Passing CORBA objects:

Any parameter whose type is specified by the name of an IDL interface, such as the return value

Shape in line 7, is a reference to a CORBA object and the value of a remote object reference is

passed.

Passing CORBA primitive and constructed types:

Arguments of primitive and constructed types are copied and passed by value. On arrival, a new

value is created in the recipient’s process. For example, the struct GraphicalObject passed as

argument (in line 7) produces a new copy of this struct at the server.

Type Object :

Object is the name of a type whose values are remote object references. It is effectively a

common supertype of all of IDL interface types such as Shape and ShapeList.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 21

Exceptions in CORBA IDL:

CORBA IDL allows exceptions to be defined in interfaces and thrown by their methods. To

illustrate this point, we have defined our list of shapes in the server as a sequence of a fixed

length (line 4) and have defined FullException (line 6), which is thrown by the method

newShape (line 7) if the client attempts to add a shape when the sequence is full.

Invocation semantics:

Remote invocation in CORBA has at-most-once call semantics as the default. However, IDL

may specify that the invocation of a particular method has maybe semantics by using the oneway

keyword. The client does not block on oneway requests, which can be used only for methods

without results.

The CORBA Naming service

It is a binder that provides operations including rebind for servers to register the remote object

references of CORBA objects by name and resolve for clients to look them up by name. The

names are structured in a hierarchic fashion, and each name in a path is inside a structure called a

NameComponent . This makes access in a simple example seem rather complex.

CORBA pseudo objects

Implementations of CORBA provide interfaces to the functionality of the ORB that programmers

need to use. In particular, they include interfaces to two of the components in the ORB core and

the Object Adaptor

CORBA client and server example

This is followed by a discussion of callbacks in CORBA. We use Java as the client and server

languages, but the approach is similar for other languages. The interface compiler idlj can be

applied to the CORBA interfaces to generate the following items:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 22

.

 The equivalent Java interfaces – two per IDL interface. The name of the first Java

interface ends in Operations – this interface just defines the operations in the IDL

interface. The Java second interface has the same name as the IDL interface and

implements the operations in the first interface as well as those in an interface suitable for

a CORBA object.

 The server skeletons for each idl interface. The names of skeleton classes end in POA ,

for example ShapeListPOA.

 The proxy classes or client stubs, one for each IDL interface. The names of these classes

end in Stub , for example _ShapeListStub\

 A Java class to correspond to each of the structs defined with the IDL interfaces. In our

example, classes Rectangle and GraphicalObject are generated. Each of these classes

contains a declaration of one instance variable for each field in the corresponding struct

and a pair of constructors, but no other methods.

 Classes called helpers and holders, one for each of the types defined in the IDL interface.

A helper class contains the narrow method, which is used to cast down from a given

object reference to the class to which it belongs, which is lower down the class hierarchy.

For example, the narrow method in ShapeHelper casts down to class Shape . The holder

classes deal with out and inout arguments, which cannot be mapped directly onto Java.

Server program

The server program should contain implementations of one or more IDL interfaces. For a server

written in an object-oriented language such as Java or C++, these implementations are

implemented as servant classes. CORBA objects are instances of servant classes.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 23

When a server creates an instance of a servant class, it must register it with the POA, which

makes the instance into a CORBA object and gives it a remote object reference. Unless this is

done, the CORBA object will not be able to receive remote invocations. Readers who studied

Chapter 5 carefully may realize that registering the object with the POA causes it to be recorded

in the CORBA equivalent of the remote object table.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 24

The client program

 It creates and initializes an ORB (line 1), then contacts the Naming Service to get a reference to

the remote ShapeList object by using its resolve method (line 2). After that it invokes its method

allShapes (line 3) to obtain a sequence of remote object references to all the Shapes currently

held at the server. It then invokes the getAllState method (line 4), giving as argument the first

remote object reference in the sequence returned; the result is supplied as an instance of the

GraphicalObject class.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 25

Callbacks

Callbacks can be implemented in CORBA in a manner similar to the one described for Java RMI

For example, the WhiteboardCallback interface may be defined as follows:

interface WhiteboardCallback {

oneway void callback(in int version);

};

This interface is implemented as a CORBA object by the client, enabling the server to send the

client a version number whenever new objects are added. But before the server can do this, the

client needs to inform the server of the remote object reference of its object. To make this

possible, the ShapeList interface requires additional methods such as register and deregister, as

follows:

int register(in WhiteboardCallback callback);

void deregister(in int callbackId);

After a client has obtained a reference to the ShapeList object and created an instance of

WhiteboardCallback, it uses the register method of ShapeList to inform the server that it is

interested in receiving callbacks. The ShapeList object in the server is responsible for keeping a

list of interested clients and notifying all of them each time its version number increases when a

new object is added.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 26

The architecture of CORBA

The architecture is designed to support the role of an object request broker that enables clients to

invoke methods in remote objects, where both clients and servers can be implemented in a

variety of programming languages. The main components of the CORBA architecture are

illustrated in Figure

CORBA provides for both static and dynamic invocations. Static invocations are used when the

remote interface of the CORBA object is known at compile time, enabling client stubs and server

skeletons to be used. If the remote interface is not known at compile time, dynamic invocation

must be used. Most programmers prefer to use static invocation because it provides a more

natural programming model.

ORB core ◊ The role of the ORB core is similar to that of the communication module . In

addition, an ORB core provides an interface that includes the following:

• operations enabling it to be started and stopped;

• operations to convert between remote object references and strings;

• operations to provide argument lists for requests using dynamic invocation.

Object adapter

The role of an object adapter is to bridge the gap between CORBA objects with IDL interfaces

and the programming language interfaces of the corresponding servant classes. This role also

includes that of the remote reference and dispatcher modules. An object adapter has the

following tasks:

• it creates remote object references for CORBA objects;

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 27

• it dispatches each RMI via a skeleton to the appropriate servant;

• it activates and deactivates servants.

An object adapter gives each CORBA object a unique object name, which forms part of its

remote object reference. The same name is used each time an object is activated. The object

name may be specified by the application program or generated by the object adapter. Each

CORBA object is registered with its object adapter, which may keep a remote object table that

maps the names of CORBA objects to their servants.

Portable object adapter

The CORBA 2.2 standard for object adapters is called the Portable Object Adapter. It is called

portable because it allows applications and servants to be run on ORBs produced by different

developers [Vinoski 1998]. This is achieved by means of the standardization of the skeleton

classes and of the interactions between the POA and the servants. The POA supports CORBA

objects with two different sorts of lifetimes:

• those whose lifetimes are restricted to that of the process their servants are instantiated in;

• those whose lifetimes can span the instantiations of servants in multiple processes.

Skeletons

Skeleton classes are generated in the language of the server by an IDL compiler. As before,

remote method invocations are dispatched via the appropriate skeleton to a particular servant,

and the skeleton unmarshals the arguments in request messages and marshals exceptions and

results in reply messages.

Client stubs/proxies

These are in the client language. The class of a proxy (for object oriented languages) or a set of

stub procedures (for procedural languages) is generated from an IDL interface by an IDL

compiler for the client language. As before, the client stubs/proxies marshal the arguments in

invocation requests and unmarshal exceptions and results in replies.

Implementation repository

• An implementation repository is responsible for activating registered servers on demand

and for locating servers that are currently running. The object adapter name is used to

refer to servers when registering and activating them.

• An implementation repository stores a mapping from the names of object adapters to the

pathnames of files containing object implementations.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 28

• Object implementations and object adapter names are generally registered with the

implementation repository when server programs are installed.

• When object implementations are activated in servers, the hostname and port number of

the server are added to the mapping.

Interface repository

The role of the interface repository is to provide information about registered IDL interfaces to

clients and servers that require it. For an interface of a given type it can supply the names of the

methods and for each method, the names and types of the arguments and exceptions. Thus, the

interface repository adds a facility for reflection to CORBA

Dynamic invocation interface

The dynamic invocation interface allows clients to make dynamic invocations on remote

CORBA objects. It is used when it is not practical to employ proxies. The client can obtain from

the interface repository the necessary information about the methods available for a given

CORBA object. The client may use this information to construct an invocation with suitable

arguments and send it to the server.

Dynamic skeletons

If a server uses dynamic skeletons, then it can accept invocations on the interface of a CORBA

object for which it has no skeleton. When a dynamic skeleton receives an invocation, it inspects

the contents of the request to discover its target object, the method to be invoked and the

arguments. It then invokes the target.

Legacy code

The term legacy code refers to existing code that was not designed with distributed objects in

mind. A piece of legacy code may be made into a CORBA object by defining an IDL interface

for it and providing an implementation of an appropriate object adapter and the necessary

skeletons.

CORBA Interface Definition Language

The CORBA Interface Definition Language, IDL, provides facilities for defining modules,

interfaces, types, attributes and method signatures. IDL has the same lexical rules as C++ but has

additional keywords to support distribution, for example interface, any, attribute, in, out, inout,

readonly, raises. It also allows standard C++ preprocessing facilities.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 29

IDL Modules

The module construct allows interfaces and other IDL type definitions to be grouped in logical

units. A module defines a naming scope, which prevents names defined within a module clashing

with names defined outside it.

IDL interface

An IDL interface describes the methods that are available in CORBA objects that implement that

interface. Clients of a CORBA object may be developed just from the knowledge of its IDL

interface.

IDL methods

The general form of a method signature is:

[oneway] <return_type> <method_name> (parameter1,..., parameterL)

[raises (except1,..., exceptN)] [context (name1,..., nameM)]

where the expressions in square brackets are optional. For an example of a method signature that

contains only the required parts, consider:

void getPerson(in string name, out Person p);

IDL types

IDL supports fifteen primitive types, which include short (16-bit), long (32- bit), unsigned short,

unsigned long, float (32-bit), double (64-bit), char, Boolean (TRUE, FALSE), octet (8-bit), and

any (which can represent any primitive or constructed type).

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 30

Attributes

IDL interfaces can have attributes as well as methods. Attributes are like public class fields in

Java. Attributes may be defined as readonly where appropriate. The attributes are private to

CORBA objects, but for each attribute declared, a pair of accessor methods is generated

automatically by the IDL compiler, one to retrieve the value of the attribute and the other to set

it. For readonly attributes, only the getter method is provided. For example, the PersonList

interface defined in Figure 5.2 includes the following definition of an attribute: readonly

attribute string listname;

Inheritance

 IDL interfaces may be extended. For example, if interface B extends interface A, this means that

it may add new types, constants, exceptions, methods and attributes to those of A. An extended

interface can redefine types, constants and exceptions, but is not allowed to redefine methods. A

value of an extended type is valid as the value of a parameter or result of the parent type. For

example, the type B is valid as the value of a parameter or result of the type A.

interface A { };

interface B: A{ };

interface C {};

interface Z : B, C {};

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 31

CORBA SERVICES

CORBA includes specifications for services that may be required by distributed objects. In

particular, the Naming Service is an essential addition to any ORB. The CORBA services

include the following:

 Naming Service:

 Event Service and Notification Service:

 Security service:

 Trading service:

 In contrast to the Naming Service which allows CORBA objects to be located by name, the

Trading Service [OMG 2000a] allows them to be located by attribute – that is, it is a directory

service. Its database contains a mapping from service types and their associated attributes onto

remote object references of CORBA objects. The service type is a name, and each attribute is a

name-value pair. Clients make queries by specifying the type of service required, together with

other arguments specifying constraints on the values of attributes, and preferences for the order

in which to receive matching offers. Trading servers can form federations in which they not only

use their own databases but also perform queries on behalf of one anothers’ clients.

 Transaction service and concurrency control service:

The object transaction service [OMG 2003] allows distributed CORBA objects to participate in

either flat or nested transactions. The client specifies a transaction as a sequence of RMI calls,

which are introduced by begin and terminated by commit or rollback (abort). The ORB attaches

a transaction identifier to each remote invocation and deals with begin, commit and rollback

requests. Clients can also suspend and resume transactions. The transaction service carries out a

two-phase commit protocol. The concurrency control service [OMG 2000b] uses locks to apply

concurrency control to the access of CORBA objects. It may be used from within transactions or

independently.

 Persistent state service:

An persistent objects can be implemented by storing them in a passive form in a persistent object

store while they are not in use and activating them when they are needed. Although ORBs

activate CORBA objects with persistent object references, getting their implementations from the

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 32

implementation repository, they are not responsible for saving and restoring the state of CORBA

objects.

 Life cycle service

The life cycle service defines conventions for creating, deleting, copying and moving CORBA

objects. It specifies how clients can use factories to create objects in particular locations,

allowing persistent storage to be used if required. It defines an interface that allows clients to

delete CORBA objects or to move or copy them to a specified location.

CORBA Naming Service

The CORBA Naming Service is a sophisticated example of the binder described in Chapter 5. It

allows names to be bound to the remote object references of CORBA objects within naming

contexts.

a naming context is the scope within which a set of names applies – each of the names within a

context must be unique. A name can be associated with either an object reference for a CORBA

object in an application or with another context in the naming service.

The names used by the CORBA Naming Service are two-part names, called Name Components,

each of which consists of two strings, one for the name and the other for the kind of the object.

The kind field provides a single attribute that is intended for use by applications and may contain

any useful descriptive information; it is not interpreted by the Naming Service.

Although CORBA objects are given hierarchic names by the Naming Service, these names

cannot be expressed as pathnames like those of UNIX files.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 33

CORBA Event Service

The CORBA Event Service specification defines interfaces allowing objects of interest, called

suppliers, to communicate notifications to subscribers, called consumers. The notifications are

communicated as arguments or results of ordinary synchronous CORBA remote method

invocations. Notifications may be propagated either by being pushed by the supplier to the

consumer or pulled by the consumer from the supplier. In the first case, the consumers

implement the PushConsumer interface which includes a method push that takes any CORBA

data type as argument. Consumers register their remote object references with the suppliers. The

supplier invokes the push method, passing a notification as argument. In the second case, the

supplier implements the PullSupplier interface, which includes a method pull that receives any

CORBA data type as its return value. Suppliers register their remote object references with the

consumers. The consumers invoke the pull method and receive a notification as result.

The notification itself is transmitted as an argument or result whose type is any, which

means that the objects exchanging notifications must have an agreement about the contents of

notifications. Application programmers, however, may define their own IDL interfaces with

notifications of any desired type.

Event channels are CORBA objects that may be used to allow multiple suppliers to

communicate with multiple consumers in an asynchronous manner. An event channel acts as a

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 34

buffer between suppliers and consumers. It can also multicast the notifications to the consumers.

Communication via an event channel may use either the push or pull style. The two styles may

be mixed; for example, suppliers may push notifications to the channel and consumers may pull

notifications from it.

CORBA Notification Service

The CORBA Notification Service extends the CORBA Event Service, retaining all of its features

including event channels, event consumers and event suppliers. The event service provides no

support for filtering events or for specifying delivery requirements. Without the use of filters, all

the consumers attached to a channel have to receive the same notifications as one another. And

without the ability to specify delivery requirements, all of the notifications sent via a channel are

given the delivery guarantees built into the implementation.

The notification service adds the following new facilities:

• Notifications may be defined as data structures. This is an enhancement of the limited

utility provided by notifications in the event service, whose type could only be either any

or a type specified by the application programmer.

• Event consumers may use filters that specify exactly which events they are interested in.

The filters may be attached to the proxies in a channel. The proxies will forward

notifications to event consumers according to constraints specified in filters in terms of

the contents of each notification.

• Event suppliers are provided with a means of discovering the events the consumers are

interested in. This allows them to generate only those events that are required by the

consumers.

• Event consumers can discover the event types offered by the suppliers on a channel,

which enables them to subscribe to new events as they become available.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 35

• It is possible to configure the properties of a channel, a proxy or a particular event. These

properties include the reliability of event delivery, the priority of events, the ordering

required (for example, FIFO or by priority) and the policy for discarding stored events.

• An event type repository is an optional extra. It will provide access to the structure of

events, making it convenient to define filtering constraints.

A structured event consists of an event header and an event body. The following example

illustrates the contents of the header:

The following example illustrates the information in the body of a structured event:

Filter objects are used by proxies in making decisions as to whether to forward each notification.

A filter is designed as a collection of constraints, each of which is a data structure with two

components:

• A list of data structures, each of which indicates an event type in terms of its domain

name and event type, for example, "home", "burglar alarm". The list includes all of the

event types to which the constraint should apply.

• A string containing a boolean expression involving the values of the event types listed

above. For example:

("domain type" == "home" && "event type" == "burglar alarm") &&

("bell" != "ringing" !! "door" == "open")

CORBA Security Service

The CORBA Security Service [Blakley 1999, Baker 1997, OMG 2002b] includes the following:

• Authentication of principals (users and servers); generating credentials for principals (that

is, certificates stating their rights); delegation of credentials is supported

www.Vidyarthiplus.com

www.Vidyarthiplus.com

CS2056-DISTRIBUTED SYSTEM Page 36

• Access control can be applied to CORBA objects when they receive remote method

invocations. Access rights may for example be specified in access control lists (ACLs).

• Security of communication between clients and objects, protecting messages for integrity

and confidentiality.

• Auditing by servers of remote method invocations.

• Facilities for non-repudiation. When an object carries out a remote invocation on behalf

of a principal, the server creates and stores credentials that prove that the invocation was

done by that server on behalf of the requesting principal.

CORBA allows a variety of security policies to be specified according to requirements. A

message-protection policy states whether client or server (or both) must be authenticated, and

whether messages must be protected against disclosure and/or modification.

Access control takes into account that many applications have large numbers of users and

even larger numbers of objects, each with its own set of methods. Users are supplied with a

special type of credential called a privilege according to their roles.

Objects are grouped into domains. Each domain has a single access control policy specifying

the access rights for users with particular privileges to objects within that domain. To allow for

the unpredictable variety of methods, each method is classified in terms of one of four generic

methods (get, set, use and manage). Get methods just return parts of the object state, set methods

alter the object state, use methods cause the object to do some work, and manage methods

perform special functions that are not intended to be available for general use. Since CORBA

objects have a variety of different interfaces, the access rights must be specified for each new

interface in terms of the above generic methods.

In its simplest form, security may be applied in a manner that is transparent to applications. It

includes applying the required protection policy to remote method invocations, together with

auditing. The security service allows users to acquire their individual credentials and privileges

in return for supplying authentication data such as a password.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

