This chapter describes clustering, a process that classifies data without an

existing or predefined model or output classes. It has a wide range of applications
in web mining, bioinformatics, and so on.

7.1 INTRODUCTION

Cluster analysis is defined as the unsupervised classification of data into various
dusters. We can also look upon cluster analysis as a statistical classification tech-
nique for discovering whether the individuals of a population fall into different
groups by making quantitative comparisons of multiple characteristics. Clustering
an be looked upon as a method of unsupervised learning under various machine-
learning techniques. The application of cluster analysis can be found in numerous
fields, namely, machine learning, pattern recognition, data mining, market
fesearch, social network analysis, image segmentation, and bioinformatics.
Cluster analysis is an iterative process of knowledge discovery, which is closely
"dlated to other similar techniques such as automatic classification and numerical
taXOnomy.
' gllge:em-kinds of application areas exist for clustering, and hence ht ;15 ha.rd
s doy (l)mlﬁc.d clustering approach in gener'al. Ic%eas, approach;s,dan eu;ls-
field. HenPed in a certain field cannot be easily mlgraftcc.l or applie to an(: er
Uit ce, we look at the various fields afld the similarities betwl::f:n t 'er?(;
tset of di-ls_an unsupervised learning tcchmque.that groups dara o zlects }l: h
Milagiry, t:)Omt classes, called clusters, so that objects within a ¢ aa.ss s (1)1:; ii
b e nf'aCh- other, while objects in separate .clas.scs are more 1ss.1md i€y
ilarity is more and interclass similarity is less. Unsupervised means
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7.2 CONCEPTS

Clustering is the process of organizing datfi into. meanir.lgful Broups called
clusters. It is not a new concept in computer science; it has existed since long bac
25 classification and taxonomy. In selecting the clustering algorithm and for e
clustering, knowledge about the type and source of the data .is'very useful. This
type of clustering has found use in fields such as content mining and generally
aims to give tags to the clusters.

In classification, we have information about the objects, characteristics we
are searching for, and the available classifications, and it is more similar to just
knowing where to place the new object in. Clustering, on the other hand, analyzs
the data and finds its characteristics, either supervised or unsupervised [1, 2]. Al
it reduces the number of bits required to convey information about a member
such that much less information is required and extra information does not caust
confusion. In this aspect, clustering is a form of data abstraction. The most genef’11
definition is that given IV items, we can divide the NN items into % groups based

on the measure of similarity between the items, such that items in a group canbe
called “similar.”

The following example (Fig. 7.1)
type. There are nine balls,
clustering the three differe

demonstrates the clustering of balls of szm;
which are of three different types. We are interes® 1
nt types of balls into three different groups.
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fig. 7.2 Balls clustered into different groups

In clustering techniques, there is no prediction of
sre divided into natural groups. These identified clus? classes, but the instances
mechanism tbat causes certain cases to bear a stron Crrs Prezumably reflect some
.nd the technique helps in finding structure in the dgat esemblance to each other,

Clustering methods can be hierarchy-based, densi::y-bas d, gri
model-based. Partitioning is another method of clustering in whiech’ &t fd'based., .and
are constructed and then evaluated by some criteria. In the hicrarv;r'l::ls partitions
hierarchical decomposition of the set of data is created usin sor;e‘ : m_ethod, a
density-based method is based on connectivity and densit%r ﬁmcticmemmcllThc
grid-based method focuses on multiple-level granularity structure The:s’(l alnb th;
approach develops models for each of the clusters with the aim c.)f ﬁndi:g il;e f:st

fit of that model to each other.

13 K-MEANS CLUSTERING
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classified into a certain number of clus-

_The main aim is to define £ centroids,

Assumj
ming  clusters, the given data set is

;tnt ?S‘“g the algorithm procedure (3, 4]
or each cluster. The description of the algorithm is as follows:

7.3 . . .
1 Basic K-Means Algorithm for Finding
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Fig. 7.3 Flow chart for k-means algorithm

Example Problem

Cluster the following seven poi - . . ons) 060
points [with (#, v) representin Jocation

e clusers: I 10,2202 5), P36, 4. PG ), 0 9, 16

, 2). The initial cluster centers are P1 (2, 10), P4(5, 8), and ,rin%

There can be different types of possible distance functions or clust®

applications [5, 6]. d
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p(point, mean2) = |42 — ul | + |v2 — 1 \
=1|5-2|+|8-10]|
=9+ 2

=5

Similarly, distance with (1, 2),

Assignment of P1 to cluster 1 is shown in Table 7.2.

Table 7.2 Progress of k-means algorithm (assignment of P1 to

pla, b) = |u2 — ul| + |02 — 1|

p(point, mean2) = |u2 — ul|+ |02 — 1|
=|1-2|+[2-10]|
=1+8

=9
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(2,10) (5, 8)

(1,2)

Point

Dist. mean 1 Dist. mean 2 Dist. mean3 Clustet,

P38

Ps
P6
g

(2, 10) 0
(2, 5)
(8, 4)
(5, 8)
(7, 5)
(6, 4)
(1,2)

/

oint
So to which cluster can we place the point (2, 10)? We can Place t}: Pcaﬂ’
(2, 10) to a cluster where the point has the shortest distance from t

that is, mean 1 (cluster 1), since the distance is 0.

Again, we go to the second point (2, 5). The distance t0 eachof T

means is calculated by using the distance function.
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\” the values are filled in M
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ble 7.3 Progress of k-means algorithm (assigning P2 to
2 . .

a cluster)
(.10 .8 T
Point Dist. mean 1 Dist. mean % Distmean3  Clyje

B, . 5 7/.'_———""”‘/" \
Pl (2.10) 0 ? ¢ L

rn @59 5 . 4 3

P3  (8.4)

P4 (5,8)

s (7,5

P6 (6, 4)

P77 (1,2

So in which cluster should the point (2, 5) be placed? The one where the
point has the shortest distance from the mean, that is, mean 3 (cluster 3),
since the distance is 0. It is shown in Table 7.3. Likewise, we fill in the rest of
the table and place each point in one of the clusters.

Likewise we fill in the rest of the table and place each point in one of the

clusters as shown in Table 7.4.

Table 7.4 Progress of k-means algorithm (end of first iteration)

S

(2, 10) (5, 8) (1,2)

__/
Point

Dist. mean 1 Dist. mean 2 Dist. mean 3 Cluster
/
P (2,10) 0

5 9 :
7 @5 5 6 4 ;
P (8, 4) 12 - 9 “
P4 (5, 8) 5 0 10 ;
PS  (7,5) 10 5 9 »
P6 (6, 4) 10 5 7 :
P71, 9 10 L_,/3
Cluster 1 Cluster 2  Cluster 3
(2, 10) (8, 4) (2, 5)
(5, 8) (1,2)
7,5)

(6, 4)
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mﬁd to re-compute the new clusger centers. For this, tak
. ints in each cluster. For clugter L, e s, take the

4 i
of all po only have .
mean N ' . Y have one point
n1(2, 10): which was the old mean; so the cluster center remains the 51;
PR $ same,

B8+5+7+0) 4 +8+5+4)

luster 2, we have|] ———  ° = ™/ »
For cluster [ 5 ’ \_S_\J 5.

2+1) 5+2)
2 2

J= (1.5, 3.5).

For cluster 3, we have ’:

That was iteration 1. Next we go to iteration 2, iteration 3, and so on until

there are no more changes in mean.
In iteration 2, we basically repeat the process explained in iteration 1, this

ime using the new means we computed.

7.3.2 Time and Space Complexity

The time complexity for 4 clusters is O(/*K™m*n), where [ is the number of
werations required for convergence, 7 is the number of points, and 7 is the
number of attributes. Since only the vectors are stored, the space requirements are
basically O(mn). 1 is typically small, and since most changes occur in the first few
terations, it can also be easily bounded. 4-means is linear in 7, the number of
points. and is simple and efficient, provided the number of clusters is significantly

less than 7.

’33 Updating Centroids Incrementally

The centroids can be updated incrementally, as each point is assigned to a cluster.

0 adjustmen s may be made in the relative weight of the point being E'Idded.
€ 80al is to achieve better accuracy and faster convergence. However, it may
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7.4 DENSITY'BASED CLUSTER\
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Densif}”baszd lsp atiz?l Cllllsterh;g of applications
nsity-based clustering algorithm that workg v
iﬁerric)s,. When I?BSCAN }'1218 processed a set Ov;_”;:; nzgtber of d.iffere.nt distance
in a cluster of will be classified as noise. DBSCAN if b ii’ - point will cither be
oint being “density-reachable” and “density-connected fs(ej on th.e concepts of a
agorithms form c.lusters of spherical shapes and so on- Bu(tng;nstgnal clustering
lusters of any arbitrary shape like “S” o gya] shapes as' in Fie. 7.5 AN can form
DBSCAN is developed based on the notions of “density’g'an.d .
data objects. The mflin idea is to consider 1 cluster as a high-dime;:it:)ftllodn o
area, where data objects are “attracted” with each other. The objects zm:l el? Sg
closely with each other at the core part of the dense area and thJereby ha\ialclieh
density. Objects at the peripheral area of the cluster are attracted to the core agrt
of the dense area and relatively sparsely distributed. Conceptually, data pointspfa“
into three classes:

with nojge (DBSCAN) is a

Core points: These points are at the interior of a cluster. An interior point has
enough points in its neighborhood. If two core points belong to each other’s
neighborhoods, then the core points belong to the same cluster.

Border points: A border point is a point that is not a core point, i.e., there are
not enough points in its neighborhood, but it falls within the neighborhood of a
core point. A border point may fall within the neighborhoods of core points from
several different clusters.

Noise points: A noise point is any point that is not a core point or a border point.

-----

\“k
F
975 Density concepts in DBSCAN

14
1 Density Concepts

Wo
Epg,l.obaj Parameters: J
o Ma’dmum radius of the neighborhoo ’

. d of that point.
Mml’tx Minimum number of points in a0 Eps—nelghborhoo 0
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Obiject: Object with at least MinDts objects within a radius “ EPS‘“eighborhOOd ,\
ject: | |
Border object: Object on the border of a cluster

742 Density-Based Clustering: Background

Density-reachable: A point p is density-reachable from a point g with respect g
Eps and MinPss if there is a chain of points p, - P P\ =4 P, =P such thatpi s

directly density-reachable from p..

Density-connected: A point p is density-connected to a point g with respect to

Eps and MinPts if there is a point 0 such that both p and g are density-reachy
from o with respect to Eps and MinPts.

7.4.3 DBSCAN: The Algorithm
Arbitrarily select a point p.

1.
2. Retrieve all points density-reachable from p with respect to Eps and MinPs.
3. If pis a core point, a cluster is formed.

-

- If p is a border point, no points are density-reachable from p and DBSCAN
visits the next point of the database.

Continue the process until all the points have been processed.

5

Estimated number of clusters: 2
2.0 .

R

Fig. 7.6 A DBSCAN clustering o -

arehousing

i
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gxample

Jer Fig. 77 for a given £ps, representeq py ¢ . |
Cor/fiﬁePrs: 3. Of thg laieleiEOInts, m, p, o, a:/wdhre arraedcl:ﬁeogéh: ?rC'eS’ G,
ach fthemisinan pSh 6;,9 oliiped COﬂtainjng at least threeJ e becaQSe
e‘s drectly density-reachable from m. Object m js directly denpplnts. Object
f’rompand vfcederCii-/ density-reachab| S
" opject g is drr & acaefromm,and is di ;

reacc)h;b'e from P, hencebquect q 1s (indirectly) densirt’;-'rseadclgzztlg Srinsw
gecause g 15 net 4 Bore SOBeL, o s not qenSiTY-reaChable from g Sjm”m, -
nd sare density-reachable from o, and o is density-reachable from Th arly r
~nd s are all density-connected. The closure of density-connectedr us, o,
z;e used to find connected dense regions as clusters. b

Fig. 7.7 'Density—reachability and density-connectivity

In'Fig. 7.6, color indicates cluster membership, with large circles indicating

“resamples found by the algorithm. Smaller circles are noncore samples that are
Sl part of a cluster. Moreover, the outliers are indicated by black points below.

'4_WEIGHTED GRAPH PARTITIONING

., : ensel

conISter‘“g on a large graph aims to partition the graph into Ser_ffal dodule)sl

n Jneqed components. Identification of functional related protein I;l social

1 | ’ 1

nerw;ge Protein—protein interaction networks, community d-eteCtll\(/)I:n of the

:Xistjnrks, ¢IC. are some of the applications of graph clusrermgl;. o s};ructufc
. : opologl

fa 8 graph dusrermg methods mainly concentrate 0l o

ra i ure.
Saph 5o that each partition achieves a cohesive internal struct

;

Elements of Graph Theory

“ 11y b set E.
MGy, E) consists of a vertex set Vand an edge
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thematical and computer science problems, Similarly
phs also arise naturally in important practical problems, including circu)iz
e % numerical linear algebra. Given a hypergraph H, k-way Pa”itioningof
n 1P
?{You; an ¢ vertices of H to disjoint nonempty partitions. The k-way Paftitioning
ass _ ' )
roble%n seeks to minimize a given COSt function of ?;:h an assignment, Ny
P ; ich i ber o eredge
is the standard cost function, which is t.hC num : yp h g ls t}}at Span mor,
than one partition. Constraints are typically imposed on the solution and ),

the problem difficult.

A hypergrap
than two vertic
kinds of information in ma

7.5 HYPERGRAPH PARTITIONING

A hypergraph is a graph whose edges can connect more than two vertices called
hyperedges. The clustering problem is then formulated as finding the minimun-
cut of a hypergraph. A minimum-cut is the removal of the set of hyperedges
(with minimum edge weight) that separates the hypergraph into # unconnected
components. The minimum-cut of the hypergraph into £ unconnected components
gives the desired clustering. The HMETIS package is employed for partitioning
An advantage of this approach is that the clustering problem can be mapped toz
graph problem without the explicit computation of similarity, which makes this
approach computationally efficient with O(nxdx#k) assuming a (close to) linear
performing hypergraph partition. Since in this formulation there is only a singe

weight associated with a hyperedge, sample-wise frequency information gets lost.
Hypergraph-based clustering consists of the following steps:

1. Deﬁne the condition for connecting a number of objects (which will be ¢
vertices of the hypergraph) by a hyperedge.

Define a measure of the strength or weight of a hyperedge.

2 B -partitionj :
ek graph-par ttioning algorithm to partition the hypergraph into £¥0

in suc.h a way that the weight of

4. C .3 the hyperedges cut is minimized.
ur(l)tr:luanugt;he partitioning until a fixed num%er of partitions are achieret (r)li
12 htness condition for the goodness of 2 cl dicates that 2 curre
partition is a good clyster. of a cluster indic
7.6 COBWEB CLUSTERING
COBWESB is an Incremental hjj|. "

imbj cd ikl OP g
climbing st ategy with bidirectiond) castfi™
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s with a collecti
ection of uuclassiﬁed objects and some means ©
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of objects. COBWERB i
tncrementally organizes of
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W means if class is C, A likely to be 1/ Qb!)lhty of C'is given
’ jects within a cl
ass

(0 80

chould have similar attributes.
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7.7 FUTURE RESEARCH DIRECTIONS

Clustering algori
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