Course co	ode Course Name	L-T-P - Credit	s Int	Year of roduction			
IT407	Knowledge Engineering	3-0-0-3		2016			
Prerequisites: CS205 Data structures.							
Course Objectives							
To enable the students:							
• To	get introduced to the basic knowledge represent	ation, problem	solving, a	nd learning			
me	thods of Artificial Intelligence.			C			
• To	solve problems in Artificial Intelligence using Pyth	hon.	1				
• To	 To familiarize with Fuzzy Logic and knowledge processing in expert systems 						
Syllabus	TECLINIOLOG						
Introduction	on to the Concepts of Artificial Intelligence, Searc	ch Space, Know	ledge Rep	resentation,			
Learning	Fechniques, Fuzzy systems and expert systems.	TV	0 1	,			
Expected	l outcome .	1 million					
The studer	nts will	A. A.					
i	i. know the fundamental concepts of Artificial Intelligence such as knowledge						
	representation, problem solving, fuzzy set and	expert systems		_			
ii	will be able to implement search methods usin	ng Python.					
Text Boo	Text Books:						
1. Elain	ne Rich and Kevin Knight, "Artificial Intelliger	nce", Tata Mc	Graw-Hill	Publishing			
Com	Company Ltd., New Delhi, Third Edition, ISBN: 13:978-0-07-008770-5, 2010.						
2. Stua	rt Russell, Peter Norvig, "Artificial Intelligenc	ce- A modern	approach	", Pearson			
Educ	cation Asia, Second Edition, ISBN:81-297-0041-7						
Reference	ces:						
1. Aks	har Bharati, Vineet Chaitanya, Rajeev Sangal,	"Natural Lang	guage Pro	cessing: A			
Pani	nian Perspective", Prentice Hall India Ltd., New D	elhi, 19 <mark>96</mark> , ISBI	N 10: 8120	309219			
2. Ami	t Konar, Artificial Intelligence and Soft Computing	g. CRC Press.					
3. Dan	W.Patterson, "Introduction to Artificial Intelligence	e and Expert Sy	ystems", P	rentice Hall			
Indi	a Ltd., New Delhi, 2009, ISBN: 81-203-0777-1.	1 5					
4. Raje	ndra Akerkar, Introduction to Artificial Intellige	ence, PHI Lear	ning Pvt.	Ltd., 2005,			
ISB	N: 81-203- 2864-7.						
	Estd		1				
	Course Plan						
Module	Contents		Hours	Sem. Exam Marks			
	Problems and Search: What is Artificial Intellig	gence, The AI		11441 110			
	Problems. Defining the Problem as a State S	Space Search.					
	Problem Characteristics	oputo statu,					
I	Searching strategies – Generate and Test, Hei	uristic Search	7	15%			
-	Techniques- Hill climbing- issues in hill climbing		,				
	Python -Introduction to Python-Lists Dictionarie	es & Tuples in					
	Python-Python implementation of Hill Climbing.						
	Search Methods - Best First Search - Imple	ementation in					
	Python - OR Graphs, The A * Algorithm, Problem Reduction-						
П	AND-OR Graphs. The AO* algorithm	n. Constraint	7	15%			
	Satisfaction. MINIMAX search procedure	Alpha–Beta					
	pruning.	Dotu					
FIRST INTERNAL EXAMINATION							

III	Knowledge representation - Using Predicate logic - representing facts in logic, functions and predicates, Conversion to clause form, Resolution in propositional logic, Resolution in predicate logic, Unification. Representing Knowledge Using Rules: Procedural Versus Declarative knowledge, Logic Programming, Forward versus Backward Reasoning.	7	15%	
IV	Learning: What is learning, Rote learning, Learning by Taking Advice, Learning in Problem-solving, Learning from example: induction, Explanation-based learning.	7	15%	
SECOND INTERNAL EXAMINATION				
V	Connectionist Models: Hopfield Networks, Learning in Neural Networks, Applications of Neural Networks, Recurrent Networks. Connectionist AI and Symbolic AI	7	20%	
VI	Expert System –Representing and using Domain Knowledge – Reasoning with knowledge – Expert System Shells –Support for explanation- examples –Knowledge acquisition-examples.	7	20%	
END SEMESTER EXAM				

QUESTION PAPER PATTERN

Maximum Marks: 100

Exam Duration: 3 hours

The question paper shall consist of Part A, Part B and Part C.

Part A shall consist of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer any two questions $(15 \times 2=30 \text{ marks})$.

Part B shall consist of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer any two questions $(15 \times 2=30 \text{ marks})$.

Part C shall consist of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer any two questions $(20 \times 2=40 \text{ marks})$.

Note : Each question can have a maximum of 4 subparts, if needed