•	Course code	Course Name	L-T-P- Credits	Year of Introduction
	ME471	Optimization Techniques	3-0-0-3	2016

Prerequisite - ME372 Operations Research

Course Objective:

• To learn the various optimization techniques for effective decision making.

Syllabus:

Linear programming – integer programming – network models – goal programming – dynamic programming – nonlinear programming – nontraditional optimization.

Expected Outcome:

• The students will be able to understand optimization techniques and apply them in solving practical problems

Text Books:

- 1. Miller, D. M. and Schmidt, J. W., Industrial Engineering and Operations Research, John Wiley & Sons, Singapore, 1990.
- 2. Paneerselvam, R., Operations Research, Prentice Hall of India, New Delhi, 2008.
- 3. Pannerselvam, R., Design and Analysis of Algorithms, Prentice Hall of India, New Delhi, 2007.
- 4. Taha, H. A., Operations Research, Pearson, 2004.

Reference Books:

- 1. Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M., Discrete-Event System Simulation, Third Edition, Pearson Education, Inc., 2001
- 2. Goel, B. S. and Mittal, S. K., Operations Research, Pragati Prakashan, Meerut, 1999.
- 3. Ravindran, Phillips and Solberg, Operations Research Principles and Practice, Willey & Sons, 1987
- 5. Srinivasan, G. "Operations Research-Principles and Applications", latest edition, PHI Pvt. Ltd.

Course Plan					
Module	Contents	Hours	End Sem. Exam. Marks		
I	Review of linear programming– revised simplex method	1 1	15%		
	Dual simplex method	1			

		1	
	Consitivity analysis shapped offerting foodbiller	1	
	Sensitivity analysis – changes affecting feasibility – changes affecting optimality	1	
		1	
П	Integer programming – importance – applications	1	15%
	Branch and bound technique	1 1 1	
	Gomory's cutting plane method	1	
	Solution to travelling salesman problem	1	
	FIRST INTERNAL EXAMINATION		
	Network models – minimal spanning tree problem	1	15%
	PRIM's algorithm	1	
	Kruskal's algorithm	1	
III	Shortest route problem –applications	1	
	Systematic method	1	
	Dijkstra's algorithm	1	
	Floyd's algorithm	1	
	Goal programming – goal programming formulation-application.	1	15%
137	Simplex method for solving goal programming	1	
IV	Dynamic programming – terminologies – forward and backward recursion –applications	1	
	Shortest path problems	1 1	
	SECOND INTERNAL EXAMINATION		
	Nonlinear programming – convex, quasi-convex, concave and	1 1	
	unimodal functions – theory of constrained optimization		_
		1	_
${f V}$	Lagrangean method		20%
		1	_
	Kuhn-Tucker conditions	1	
	2014	1	
	Nontraditional optimization – computational complexity-	1	
	Introduction to metaheuristics – areas of application	1	20%
VI	Genetic algorithm (GA) – terminologies – steps and examples	1	
, _	Tabu search (TS) – steps and examples	1	
	Simulated annealing (SA) – steps and examples	1	
	Simulated annealing (SA) – steps and examples Ant colony optimization (ACO) – steps and examples - Particle	1	

Question Paper Pattern

Maximum marks: 100 Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks
Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks
Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

