Course	Course Name	L-T-F	?- Y	ear of		
code		Credi	its Intr	oduction		
MA486	ADVANCED NUMERICAL COMPUTATIONS	3-0-0	-3	2016		
	Prerequisite: NIL					
Course Objectives.						
1. To understand the role of approximation theory in engineering problems.						
2. To fai	miliarize various numerical methods for computation.					
3. To un	derstand the role of optimization in problem solving.					
Syllabus:						
Matrix Comp	Matrix Computations, Interpolation and approximation, Inner product and Norms, Nonlinear					
programming, Numerical Solution of Partial differential equations						
Expected ou	Expected outcome					
At the end of	At the end of the course the student will be able to					
(i) solve	the linear system of equations	1				
(ii) find the	he interpolation and approximations					
(iii) apply	various optimization methods in non linar programmin	ıg				
(iv) analy	yse the solution by finding the numerical solution of par	tial diff	ferential e	quations		
Text Books:	UNIVERSIT					
1. B S C	Grewal, Numerical methods in Engineering and Science	, Khanı	na Publisł	ners		
2. Sastry	y S.S., Introductory Methods of Numerical Analysis, Fit	fth Edit	ion, PHI,	2012		
3. Singi	resu .S. Rao, Engineering Optimization: Theory and Pra	ictice, 3	rd edition	New age		
inter	national publishers.					
References:						
1. David K. Ruch and Patrick J. Fleet, Wavelet Theory, An Elementary Approach With						
Appli	cations, John Wiley, 2009					
2. Howard Anton and Chris Rorres, Elementary Linear Algebra, 11 th Edition, Wiley						
India,	, 2014					
3. P. Ka	ndasamy and K Thilagavathi: Numerical methods: S C	HAND	Publisher	ſS.		
4. Stephen Andrilli and David Hecker, Elementary Linear Algebra, 4 th edition, Academic						
Press,	,2010					
5. Stevw	vn C. Chapra and Raymond R. Canale, Numerical meth	nods for	r engineer	r, Seventh		
Editic	on, McGraw-Hill, 2015.					
Module	Syllabus	1	Hours	End		
				Sem.		
				Exam		
				Marks		
I	Matrix Computations: Solving linear system: Factoriz	zation				
	method, Relaxation method. Singular value decompose	sition,	7	15%		
-	Matrix Eigen Value problem, Power method, Jac	cobi's		1570		
	method.					
II	Inner product and Norms: Inner product spaces, prop	oerties				
	of inner product, length, distance and norms, N	<i>A</i> atrix		15%		
	norms, Cauchy–Schwarz inequality, Orthogonality, O	Gram-	7	1570		
	Schmidt Process, Orthogonal projection.					
	FIRST INTERNAL EXAMINATION			1		
	Interpolation: Finite difference operators, interpo	lation				
	using divided difference. Numerical differenti	ation:				
	derivatives from difference table (finite difference	and	7	15%		
	divided difference). Evaluation of double inte	egrals	1	1570		
'	Trapezoidal and Simpsons rule.					

IV	Nonlinear programming: One dimensional minimization methods. Unimodal functions. Elimination methods: Unrestricted search method, Fibonacci method, Golden section methods. Interpolation methods: Quadratic interpolation method. Direct root method: Newton method.	7	15%	
V	Nonlinear programming (Contd.): Unconstrained optimization techniques: Direct search method: random search methods, Grid search method, Univariate method. Indirect search methods: Conjugate gradient method(Fletcher –Reeves method), Newton's method, Marquardt method		20%	
VI	NumericalSolutionofPDE:Finitedifferenceapproximation of partial derivatives, classification of second order P.D.E.Solution of Elliptic equation-Laplace equation. and Poisson equation. Solution of parabolic equation-One dimensional heat equation (Crank Nicholson scheme). Solution of Hyperbolic equation-wave equation.(Method of finite differences)	7	20%	
END SEMESTER EXAMINATION				

Question Paper Pattern (End semester examination) 3 hours

Time : 3 hours

Maximum marks: 100

The question paper shall consist of Part A, Part B and Part C.

Part A shall consist of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer any two questions $(15 \times 2=30 \text{ marks})$.

Part B shall consist of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer any two questions $(15 \times 2=30 \text{ marks})$.

Part C shall consist of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer any two questions (20×2=40 marks)

2014