Course N	No. Course Name L-T-	P - Credit	s Int	Year of			
IT305	Operating systems	3-0-0:3	1110	2016			
Pre-requisites: C202 Computer Organization and Architecture							
Course Objectives							
• To provide basic knowledge of computer operating system structures and functioning							
 To provide basic knowledge of computer operating system structures and functioning. To understand the fundamental concents, processes and communication. 							
• 10 • To	• To understand the fundamental concepts, processes and communication						
• 10 understand and analyse implementation of: process synchronization							
• 10 know design issues associated with operating systems							
• To familiarise with memory management including virtual memory							
Syllabus							
Introduction: Operating Systems-different types, System kernel, Shell, Processes Process							
Scheduling methods, Inter process Communication, Memory management : fixed &variable							
partitions paging & segmentation - virtual memory concepts - demand paging - page							
replacement - Device management : disk scheduling algorithms - sector queuing -device drivers.							
Dead locks - conditions for deadlock - prevention - avoidance - detection - recovery from dead							
lock -ban	kers' algorithm resource trajectories –starvation, F	ile system	n concepts	s – Access			
methods –	Directory structure – Directory implementation – Linea	r list, Hash	n table				
Expected	outcome .						
• Th	e student will understand the functions of operating Syst	em, systen	n interactio	ons with			
oth	er parts of computer.	-					
Text Bool		TT 11					
I. And	ew S. Tanenbaum, "Modern Operating Systems", Prenti	ce Hall	XX7 1				
2. J. L. Peterson and A. Silberschatz, Operating System Concepts, Addison Wesley.							
Keferences:							
1. D M Dhamdhere, "Operating Systems A Concept-based Approach", Tata McGraw Hill,							
2 W	liam Stallings Operating Systems 6th Edition Pearson	2000 ISBN	1078-81-3	17-2528-3			
2. W	rry Nutt "Operating Systems A Modern perspective"	Third Edi	tion Dear	17-2320-3			
5. Garry Nutt, Operating Systems – A Modern perspective , Third Edition, Pearson Education							
Lu	Fete		2				
	Course Plan	J					
Module	Contents	1	Hours	Sem. Exam Marks			
	Introduction: Operating Systems – Batch, Multi prog	rammed,		15%			
Ι	Time-sharing and Real time systems –System calls –	System	<i>.</i>				
	Programs — Simple structure, Layered approach –	Kernel,	6				
	Shell.	,					
п	Processes Process Scheduling - Round Robin Sched	uling –		15%			
	Priority scheduling -multiple queues - Shortest Job	First -	0				
	Guaranteed scheduling - Two- level scheduling. Pred	emptive	8				
	scheduling, Dispatcher -Multiple-processor scheduling	•					
FIRST INTERNAL EXAMINATION							
	Inter process Communication -Race Conditions -	Critical					
III	Sections - Mutual Exclusion - Busy Waiting - Sle	eep And	6	15%			
	Wakeup - Semaphores - Event Counters - Monitors -	Message	0				
	Passing						

IV	Memory management : Basics - swapping - fixed partitions - variable partitions - overlay - paging - segmentation - segmented paging - virtual memory concepts - demand paging - page replacement - space allocation policies - dynamic linking ,Thrashing	7	15%		
SECOND INTERNAL EXAMINATION					
V	Device management : Physical characteristics – disk scheduling algorithms - sector queuing -device drivers. Dead locks : Deadlock characteristics -conditions for deadlock- prevention - avoidance - detection – recovery from dead lock - bankers algorithm resource trajectories - starvation.	8	20%		
VI	File System: File concept – Access methods – Directory structure – Directory implementation – Linear list, Hash table – Case study: Linux system.	7	20%		
END SEMESTER EXAM					

QUESTION PAPER PATTERN

Maximum Marks: 100

Exam Duration: 3 hours

The question paper shall consist of Part A, Part B and Part C.

Part A shall consist of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer any two questions $(15 \times 2=30 \text{ marks})$.

Part B shall consist of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer any two questions $(15 \times 2=30 \text{ marks})$.

Part C shall consist of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer any two questions $(20 \times 2=40 \text{ marks})$.

2014

Note : Each question can have a maximum of 4 subparts, if needed