Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: IT305 Course Name: OPERATING SYSTEMS (IT)

M	Max. Marks: 100 Duration: 3 Hours								
PART A									
_		Answer any two full questions, each carries 15 marks							
1	a)	, ·							
	b)								
		degree of multiprogramming in a system? Justify your answer.							
	c)	1 ,							
		light weight process? Draw the diagram showing transitions of states of a process.							
2	a)) What is SPOOL ing? Write any two salient features of Batch Operating System. (5)							
		Write any three differences between monolithic and micro kernels							
	b)	How do we calculate the length of a job in SJF? Draw Gantt Chart and find the	(5)						
		Average waiting time and average Turn Around Time for the following processes							
		using pre-emptive priority scheduling.							
		Process CPU Burst Priority Arrival Time							
		P1 3 2 0							
		P2 1 1 1							
		P3 5 7 4							
		P4 3 6							
	c)	Write any two characteristics of Distributed OS. Why do we say that a single	(5)						
		program can give rise to many processes? How the RR scheduling will give a							
		better response time in short term scheduling?							
3	a)	Write a note on APIs. Illustrate how APIs help in developing applications. Give	(5)						
		any two examples for APIs.							
	b)	What are the fields in a process control block? What is the use of PCB in context	(5)						
		switching? Write note on fork () system call in UNIX.							
	c)	Explain the layered approach in system design. What are the advantages of the layered	(5)						
		approach to system design? What are the disadvantages of using the layered approach?							
		PART B							
		Answer any two full questions, each carries 15 marks							
4	a)	How pipes are used in IPC? Illustrate the race condition with an example.	(5)						
	b)	Illustrate external and internal fragmentation of Memory.	(5)						
		Given five memory wholes of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (ill order),							
		how would the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417							
		KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of							
		memory?							
	c)	Write any two message passing mechanisms? Write short note on the following:	(5)						
		i) Cooperating processes ii) Concurrent processes.							
5	a)	How semaphore could be used as a solution for Critical section problem? (5							
	b) Consider the following page reference string: (5)								

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement algorithms, assuming five frames? Assume that all frames are initially empty.

- i) LRU replacement
- ii) FIFO replacement iii) Optimal replacement
- c) How does paging ensure Protection and Sharing? What causes thrashing situation in Operating System?

- (5)
- What are the steps in handling page fault? Consider a logical address space of 32 (5) pages with 1,024 words per page, mapped onto a physical memory of 16 frames. Calculate:
 - i) How many bits are required in. the logical address?
 - ii) How many bits are required in the physical address?
 - b) Give the Dining Philosophers problem. Explain monitor as a solution for it.
 - c) Write short noteson the following:

(5) (5)

- i) JAVA monitors
- ii) Event Counters

PART C

Answer any two full questions, each carries 20 marks

- 7 a) How would you select a Disk Scheduling algorithm? What do you mean by device (7) Driver?
 - b) Explain the significance of reference count in Acyclic Graph Directory structure **(7)**
 - c) How to distinguish deadlock from starvation? How to eliminate circular wait (6) situation to prevent deadlock?
- 8 a) Consider a system with 5 processes numbered from P0 to P4 with only three types (8) of resources A, B, C each with instances 10, 5, 7 respectively. At time t₀, the snapshot of the demand and allocation of resources is as shown below. Using Bankers' Safety Algorithm, check whether < P1, P3, P4, P2, P0 > is a safe sequence. Write the contents of Work and finish data structures at every pass.

								<i>J</i> 1		
Process	Allocation				Max	Max Available				
P0	0	1	0	7	5	3	3	3	2	
P1	2	0	0	3	2	2				
P2	3	0	2	9	0	2				
P3	2	1	1	2	2	2				
P4	0	0	2	4	3	3				

b) Write about basic file system structure.

- (5)
- c) How the policy differs in UNIX and MS DOS to delete a directory in a tree (7) structured directory structure? Discuss the merit and demerits of each policy.
- a) Draw the diagram of Virtual File System Concept in LINUX. Write about the two (7) basic functions of the VFS.
 - b) What are the approaches for recovery from deadlock? Write merits and demerits of (7) each.
 - c) Write about the six basic operations on files.

(6)