
Computer Science Lecture 16, page 1Computer Science CS377: Operating Systems

Last Class: Paging
• Process generates virtual addresses from 0 to Max.
• OS divides the process onto pages; manages a page table for every

process; and manages the pages in memory
• Hardware maps from virtual addresses to physical addresses.

Computer Science Lecture 16, page 2Computer Science CS377: Operating Systems

Today: Segmentation
Segments take the user's view of the program and gives it to the OS.
• User views the program in logical segments, e.g., code, global

variables, stack, heap (dynamic data structures), not a single linear
array of bytes.

• The compiler generates references that identify the segment and
the offset in the segment, e.g., a code segment with offset = 399

• Thus processes thus use virtual addresses that are segments and
segment offsets.

⇒Segments make it easier for the call stack and heap to grow
dynamically. Why?

⇒Segments make both sharing and protection easier. Why?

Computer Science Lecture 16, page 3Computer Science CS377: Operating Systems

Implementing Segmentation
• Segment table: each entry contains a base address in memory,

length of segment, and protection information (can this segment
be shared, read, modified, etc.).

• Hardware support: multiple base/limit registers.

Computer Science Lecture 16, page 4Computer Science CS377: Operating Systems

Implementing Segmentation
• Compiler needs to generate virtual addresses whose upper order

bits are a segment number.
• Segmentation can be combined with a dynamic or static relocation

system,
– Each segment is allocated a contiguous piece of physical memory.
– External fragmentation can be a problem again

• Similar memory mapping algorithm as paging. We need
something like the TLB if programs can have lots of segments

• Let's combine the ease of sharing we get from segments with
efficient memory utilization we get from pages.

Computer Science Lecture 16, page 5Computer Science CS377: Operating Systems

Combining Segments and Paging
• Treat virtual address space as a collection of segments (logical

units) of arbitrary sizes.
• Treat physical memory as a sequence of fixed size page frames.
• Segments are typically larger than page frames,
⇒Map a logical segment onto multiple page frames by paging the

segments

Computer Science Lecture 16, page 6Computer Science CS377: Operating Systems

Combining Segments and Paging

Computer Science Lecture 16, page 7Computer Science CS377: Operating Systems

Addresses in a Segmented Paging
System

• A virtual address becomes a segment number, a page within that
segment, and an offset within the page.

• The segment number indexes into the segment table which yields
the base address of the page table for that segment.

• Check the remainder of the address (page number and offset)
against the limit of the segment.

• Use the page number to index the page table. The entry is the
frame. (The rest of this is just like paging.)

• Add the frame and the offset to get the physical address.

Computer Science Lecture 16, page 8Computer Science CS377: Operating Systems

Addresses in a Segmented Paging
System

Computer Science Lecture 16, page 9Computer Science CS377: Operating Systems

Addresses in a Segmented Paging
System: Example

• Given a memory size of 256 addressable words,
• a page table indexing 8 pages,
• a page size of 32 words, and
• 8 logical segments

1. How many bits is a physical address?
2. How many bits is a virtual address?
3. How many bits for the seg #, page #, offset?
4. How many segment table entries do we need?
5. How many page table entries do we need?

Computer Science Lecture 16, page 10Computer Science CS377: Operating Systems

Sharing Pages and Segments
• Share individual pages by copying page table entries.
• Share whole segments by sharing segment table entries, which is

the same as sharing the page table for that segment.
• Need protection bits to specify and enforce read/write permission.

– When would segments containing code be shared?
– When would segments containing data be shared?

Computer Science Lecture 16, page 11Computer Science CS377: Operating Systems

Sharing Pages and Segments:
Implementation Issues

• Where are the segment table and page tables stored?
– Store segment tables in a small number of associative registers; page tables

are in main memory with a TLB (faster but limits the number of segments a
program can have)

– Both the segment tables and page tables can be in main memory with the
segment index and page index combined used in the TLB lookup (slower
but no restrictions on the number of segments per program)

• Protection and valid bits can go either on the segment or the page
table entries

• Note: Just like recursion, we can do multiple levels of paging and
segmentation when the tables get too big.

Computer Science Lecture 16, page 12Computer Science CS377: Operating Systems

Segmented Paging: Costs and Benefits

• Benefits: faster process start times, faster process growth,
memory sharing between processes.

• Costs: somewhat slower context switches, slower address
translation.

• Pure paging system => (virtual address space)/(page size) entries
in page table. How many entries in a segmented paging system?

• What is the performance of address translation of segmented
paging compared to contiguous allocation with relocation?
Compared to pure paging?

• How does fragmentation of segmented paging compare with
contiguous allocation? With pure paging?

Computer Science Lecture 16, page 13Computer Science CS377: Operating Systems

Putting it all together
• Relocation using Base and Limit registers

– simple, but inflexible

• Segmentation:
– compiler's view presented to OS
– segment tables tend to be small
– memory allocation is expensive and complicated (first fit, worst fit, best

fit).
– compaction is needed to resolve external fragmentation.

Computer Science Lecture 16, page 14Computer Science CS377: Operating Systems

Putting it all together
• Paging:

– simplifies memory allocation since any page can be allocated to any frame
– page tables can be very large (especially when virtual address space is large

and pages are small)

• Segmentation & Paging
– only need to allocate as many page table entries as we need (large virtual

address spaces are not a problem).
– easy memory allocation, any frame can be used
– sharing at either the page or segment level
– increased internal fragmentation over paging
– two lookups per memory reference

