
Chapter 1

•  Software & Software Engineering

These slides are designed and adapted from slides provided by Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009) by Roger Pressman and Software Engineering 9/e Addison Wesley 2011 by Ian Sommerville!

1"

 
Software Engineering: A Practitioner’s Approach, 7/e "
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

Software Engineering 9/e"
By Ian Sommerville

CS435: Introduction to Software Engineering!
"

" " " " " " "Dr. M. Zhu "

What is Software?

2"

!
!
!
!
!
!
!
!

The product that software professionals build and then support
over the long term.

Software encompasses: (1) instructions (computer programs)
that when executed provide desired features, function, and
performance; (2) data structures that enable the programs to
adequately store and manipulate information and (3)
documentation that describes the operation and use of the
programs.

Software products
•  Generic products

•  Stand-alone systems that are marketed and sold to any customer
who wishes to buy them.

•  Examples – PC software such as editing, graphics programs,
project management tools; CAD software; software for specific
markets such as appointments systems for dentists.

•  Customized products
•  Software that is commissioned by a specific customer to meet

their own needs.
•  Examples – embedded control systems, air traffic control

software, traffic monitoring systems.

3

Why Software is Important?

•  The economies of ALL developed nations are dependent on
software.

•  More and more systems are software controlled (transportation,
medical, telecommunications, military, industrial, entertainment,)

•  Software engineering is concerned with theories, methods and tools
for professional software development.

•  Expenditure on software represents a
significant fraction of GNP in all developed countries.

Software costs

•  Software costs often dominate computer system costs. The
costs of software on a PC are often greater than the hardware
cost.

•  Software costs more to maintain than it does to develop. For
systems with a long life, maintenance costs may be several
times development costs.

•  Software engineering is concerned with cost-effective software
development.

Features of Software?
•  Its characteristics that make it different from other things human being

build.
Features of such logical system:
•  Software is developed or engineered, it is not manufactured in the

classical sense which has quality problem.
•  Software doesn't "wear out.” but it deteriorates (due to change). Hardware

has bathtub curve of failure rate (high failure rate in the beginning, then drop to
steady state, then cumulative effects of dust, vibration, abuse occurs).

•  Although the industry is moving toward component-based construction
(e.g. standard screws and off-the-shelf integrated circuits), most
software continues to be custom-built. Modern reusable components
encapsulate data and processing into software parts to be reused by
different programs. E.g. graphical user interface, window, pull-down
menus in library etc.

6"

Wear vs. Deterioration

7"

Software Applications
•  1. System software: such as compilers, editors, file management utilities
•  2. Application software: stand-alone programs for specific needs.
•  3. Engineering/scientific software: Characterized by “number crunching”algorithms. such

as automotive stress analysis, molecular biology, orbital dynamics etc
•  4. Embedded software resides within a product or system. (key pad control of a

microwave oven, digital function of dashboard display in a car)
•  5. Product-line software focus on a limited marketplace to address mass consumer

market. (word processing, graphics, database management)
•  6. WebApps (Web applications) network centric software. As web 2.0 emerges, more

sophisticated computing environments is supported integrated with remote database and
business applications.

•  7. AI software uses non-numerical algorithm to solve complex problem. Robotics, expert
system, pattern recognition game playing 8"

Software—New Categories
•  Open world computing—pervasive, ubiquitous, distributed computing due to

wireless networking. How to allow mobile devices, personal computer,
enterprise system to communicate across vast network.

•  Netsourcing—the Web as a computing engine. How to architect simple and
sophisticated applications to target end-users worldwide.

•  Open source—”free” source code open to the computing community (a
blessing, but also a potential curse!)

•  Also … (see Chapter 31)
•  Data mining
•  Grid computing
•  Cognitive machines
•  Software for nanotechnologies

These slides are designed to accompany Software Engineering: A
Practitioner’s Approach, 7/e (McGraw-Hill 2009). Slides copyright 2009 by
Roger Pressman. !

9"

The IEEE definition:
Software Engineering: (1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software;
that is, the application of engineering to software. (2) The
study of approaches as in (1).

The seminal definition:
[Software engineering is] the establishment and use of
sound engineering principles in order to obtain
economically software that is reliable and works
efficiently on real machines.

Software Engineering Definition

Importance of Software Engineering

•  More and more, individuals and society rely on advanced
software systems. We need to be able to produce reliable and
trustworthy systems economically and quickly.

•  It is usually cheaper, in the long run, to use software
engineering methods and techniques for software systems
rather than just write the programs as if it was a personal
programming project. For most types of system, the majority of
costs are the costs of changing the software after it has gone
into use.

11

FAQ about software engineering

12

Question Answer

What is software? Computer programs, data structures and associated
documentation. Software products may be developed for
a particular customer or may be developed for a general
market.

What are the attributes of good software? Good software should deliver the required functionality
and performance to the user and should be
maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is
concerned with all aspects of software production.

What is the difference between software
engineering and computer science?

Computer science focuses on theory and fundamentals;
software engineering is concerned with the practicalities
of developing and delivering useful software.

What is the difference between software
engineering and system engineering?

System engineering is concerned with all aspects of
computer-based systems development including
hardware, software and process engineering. Software
engineering is part of this more general process.

Essential attributes of good software

13

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

Dependability and
security

Software dependability includes a range of characteristics
including reliability, security and safety. Dependable software
should not cause physical or economic damage in the event of
system failure. Malicious users should not be able to access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable and
compatible with other systems that they use.

A Layered Technology

14"

Software Engineering!

a “quality” focus!

process model!

methods!

tools!

n  Any engineering approach must rest on organizational commitment to quality which fosters a
continuous process improvement culture. "

n  Process layer as the foundation defines a framework with activities for effective delivery of
software engineering technology. Establish the context where products (model, data, report, and
forms) are produced, milestone are established, quality is ensured and change is managed. "

n  Method provides technical how-to’s for building software. It encompasses many tasks including
communication, requirement analysis, design modeling, program construction, testing and
support. "

n  Tools provide automated or semi-automated support for the process and methods. !

Software Process

•  A process is a collection of activities, actions and tasks
that are performed when some work product is to be
created. It is not a rigid prescription for how to build
computer software. Rather, it is an adaptable approach
that enables the people doing the work to pick and choose
the appropriate set of work actions and tasks.

•  Purpose of process is to deliver software in a timely
manner and with sufficient quality to satisfy those who
have sponsored its creation and those who will use it.

15

Five Activities of a Generic
Process framework

•  Communication: communicate with customer to understand objectives and gather
requirements

•  Planning: creates a “map” defines the work by describing the tasks, risks and
resources, work products and work schedule.

•  Modeling: Create a “sketch”, what it looks like architecturally, how the
constituent parts fit together and other characteristics.

•  Construction: code generation and the testing.
•  Deployment: Delivered to the customer who evaluates the products and provides

feedback based on the evaluation.

•  These five framework activities can be used to all software development
regardless of the application domain, size of the project, complexity of the efforts
etc, though the details will be different in each case.

•  For many software projects, these framework activities are applied iteratively as
a project progresses. Each iteration produces a software increment that provides a
subset of overall software features and functionality.

16

Umbrella Activities
Complement the five process framework activities and help team manage and control

progress, quality, change, and risk.
•  Software project tracking and control: assess progress against the plan and take

actions to maintain the schedule.
•  Risk management: assesses risks that may affect the outcome and quality.
•  Software quality assurance: defines and conduct activities to ensure quality.
•  Technical reviews: assesses work products to uncover and remove errors before

going to the next activity.
•  Measurement: define and collects process, project, and product measures to ensure

stakeholder’s needs are met.
•  Software configuration management: manage the effects of change throughout the

software process.
•  Reusability management: defines criteria for work product reuse and establishes

mechanism to achieve reusable components.
•  Work product preparation and production: create work products such as models,

documents, logs, forms and lists.
17"

Adapting a Process Model

The process should be agile and adaptable to problems. Process adopted for
one project might be significantly different than a process adopted from
another project. (to the problem, the project, the team, organizational
culture). Among the differences are:!
!
• the overall flow of activities, actions, and tasks and the interdependencies
among them!
• the degree to which actions and tasks are defined within each framework
activity!
• the degree to which work products are identified and required!
• the manner which quality assurance activities are applied!
• the manner in which project tracking and control activities are applied!
• the overall degree of detail and rigor with which the process is described!
• the degree to which the customer and other stakeholders are involved with
the project!
• the level of autonomy given to the software team!
• the degree to which team organization and roles are prescribed!

18"

Prescriptive and Agile
Process Models

!
• The prescriptive process models stress detailed definition,
identification, and application of process activates and tasks. Intent is
to improve system quality, make projects more manageable, make
delivery dates and costs more predictable, and guide teams of
software engineers as they perform the work required to build a
system. !
• Unfortunately, there have been times when these objectives were not
achieved. If prescriptive models are applied dogmatically and
without adaptation, they can increase the level of bureaucracy.!

• Agile process models emphasize project “agility” and follow a set
of principles that lead to a more informal approach to software
process. It emphasizes maneuverability and adaptability. It is
particularly useful when Web applications are engineered. !

19"

The Essence of Practice

•  How does the practice of software engineering fit in the
process activities mentioned above? Namely,
communication, planning, modeling, construction and
deployment.

•  George Polya outlines the essence of problem solving,
suggests:

1.!Understand the problem (communication and analysis).!
2.!Plan a solution (modeling and software design).!
3.!Carry out the plan (code generation).!
4.!Examine the result for accuracy (testing and quality assurance).!

20"

Understand the Problem

•  Who has a stake in the solution to the problem? That is,
who are the stakeholders?!

•  What are the unknowns? What data, functions, and
features are required to properly solve the problem?!

•  Can the problem be compartmentalized? Is it possible to
represent smaller problems that may be easier to
understand?!

•  Can the problem be represented graphically? Can an
analysis model be created?!

21"

Plan the Solution

•  Have you seen similar problems before? Are there patterns that are
recognizable in a potential solution? Is there existing software
that implements the data, functions, and features that are
required? !

•  Has a similar problem been solved? If so, are elements of the
solution reusable?!

•  Can subproblems be defined? If so, are solutions readily apparent
for the subproblems?!

•  Can you represent a solution in a manner that leads to effective
implementation? Can a design model be created?!

22"

Carry Out the Plan

•  Does the solutions conform to the plan? Is source code
traceable to the design model?!

•  Is each component part of the solution provably correct?
Has the design and code been reviewed, or better,
have correctness proofs been applied to algorithm?!

23"

Examine the Result

•  Is it possible to test each component part of the solution?
Has a reasonable testing strategy been
implemented?!

•  Does the solution produce results that conform to the
data, functions, and features that are required? Has the
software been validated against all stakeholder
requirements?!

24"

Hooker’s General Principles for Software
Engineering Practice: important underlying law

Help you establish mind-set for solid software engineering
practice (David Hooker 96). !
• 1: The Reason It All Exists: provide values to users !
• 2: KISS (Keep It Simple, Stupid! As simple as possible)!
• 3: Maintain the Vision (otherwise, incompatible design)!
• 4: What You Produce, Others Will Consume (code with concern for those
that must maintain and extend the system)!
• 5: Be Open to the Future (never design yourself into a corner as
specification and hardware changes)!
• 6: Plan Ahead for Reuse!
• 7: Think! Place clear complete thought before action produces better results.!

25"

Software Myths
Erroneous beliefs about software and the process that is
used to build it.
• Affect managers, customers (and other non-technical
stakeholders) and practitioners
• Are believable because they often have elements of
truth,
but …
• Invariably lead to bad decisions,
therefore …
• Insist on reality as you navigate your way through
software engineering 26"

Software Myths Examples
•  Myth 1: Once we write the program and get it to work, our job is done.
•  Reality: the sooner you begin writing code, the longer it will take you to get done. 60% to 80%

of all efforts are spent after software is delivered to the customer for the first time.

•  Myth 2: Until I get the program running, I have no way of assessing its quality.
•  Reality: technical review are a quality filter that can be used to find certain classes of software

defects from the inception of a project.

•  Myth 3: software engineering will make us create voluminous and unnecessary documentation
and will invariably slow us down.

•  Reality: it is not about creating documents. It is about creating a quality product. Better quality
leads to a reduced rework. Reduced work results in faster delivery times.

•  Many people recognize the fallacy of the myths. Regrettably, habitual attitudes and
methods foster poor management and technical practices, even when reality dictates a
better approach.

27"

How It all Starts

•  SafeHome:
•  Every software project is precipitated by some

business need—!
•  the need to correct a defect in an existing application;!
•  the need to the need to adapt a ‘legacy system’ to a changing

business environment;!
•  the need to extend the functions and features of an existing

application, or!
•  the need to create a new product, service, or system.!

28"

Case studies
•  A personal insulin pump

•  An embedded system in an insulin pump used by diabetics to
maintain blood glucose control.

•  A mental health case patient management system
•  A system used to maintain records of people receiving care for

mental health problems.
•  A wilderness weather station

•  A data collection system that collects data about weather
conditions in remote areas.

29

Insulin pump control system

•  Collects data from a blood sugar sensor and calculates the
amount of insulin required to be injected.

•  Calculation based on the rate of change of blood sugar levels.
•  Sends signals to a micro-pump to deliver the correct dose of

insulin.
•  Safety-critical system as low blood sugars can lead to brain

malfunctioning, coma and death; high-blood sugar levels have
long-term consequences such as eye and kidney damage.

30

Insulin pump hardware
architecture

31

Activity model of the insulin
pump

32

Essential high-level
requirements

•  The system shall be available to deliver insulin when required.
•  The system shall perform reliably and deliver the correct

amount of insulin to counteract the current level of blood sugar.
•  The system must therefore be designed and implemented to

ensure that the system always meets these requirements.

33

A patient information system for
mental health care
•  A patient information system to support mental health care is a

medical information system that maintains information about
patients suffering from mental health problems and the
treatments that they have received.

•  Most mental health patients do not require dedicated hospital
treatment but need to attend specialist clinics regularly where
they can meet a doctor who has detailed knowledge of their
problems.

•  To make it easier for patients to attend, these clinics are not just
run in hospitals. They may also be held in local medical
practices or community centres.

34

MHC-PMS
•  The MHC-PMS (Mental Health Care-Patient Management

System) is an information system that is intended for use in
clinics.

•  It makes use of a centralized database of patient information
but has also been designed to run on a PC, so that it may be
accessed and used from sites that do not have secure network
connectivity.

•  When the local systems have secure network access, they use
patient information in the database but they can download and
use local copies of patient records when they are disconnected.

35

MHC-PMS goals

•  To generate management information that allows health service
managers to assess performance against local and government
targets.

•  To provide medical staff with timely information to support the
treatment of patients.

36

The organization of the MHC-PMS

37

MHC-PMS key features
•  Individual care management

•  Clinicians can create records for patients, edit the information in the
system, view patient history, etc. The system supports data
summaries so that doctors can quickly learn about the key problems
and treatments that have been prescribed.

•  Patient monitoring
•  The system monitors the records of patients that are involved in

treatment and issues warnings if possible problems are detected.
•  Administrative reporting

•  The system generates monthly management reports showing the
number of patients treated at each clinic, the number of patients who
have entered and left the care system, number of patients sectioned,
the drugs prescribed and their costs, etc.

38

MHC-PMS concerns
•  Privacy

•  It is essential that patient information is confidential and is never
disclosed to anyone apart from authorised medical staff and the
patient themselves.

•  Safety
•  Some mental illnesses cause patients to become suicidal or a

danger to other people. Wherever possible, the system should
warn medical staff about potentially suicidal or dangerous
patients.

•  The system must be available when needed otherwise safety may
be compromised and it may be impossible to prescribe the correct
medication to patients.

39

Wilderness weather station
•  The government of a country with large areas of wilderness

decides to deploy several hundred weather stations in remote
areas.

•  Weather stations collect data from a set of instruments that
measure temperature and pressure, sunshine, rainfall, wind
speed and wind direction.
•  The weather station includes a number of instruments that

measure weather parameters such as the wind speed and direction,
the ground and air temperatures, the barometric pressure and the
rainfall over a 24-hour period. Each of these instruments is
controlled by a software system that takes parameter readings
periodically and manages the data collected from the instruments.

• 

40

The weather station’s
environment

41

Weather information system
•  The weather station system

•  This is responsible for collecting weather data, carrying out some
initial data processing and transmitting it to the data management
system.

•  The data management and archiving system
•  This system collects the data from all of the wilderness weather

stations, carries out data processing and analysis and archives the
data.

•  The station maintenance system
•  This system can communicate by satellite with all wilderness weather

stations to monitor the health of these systems and provide reports of
problems.

42

Additional software
functionality

•  Monitor the instruments, power and communication hardware
and report faults to the management system.

•  Manage the system power, ensuring that batteries are charged
whenever the environmental conditions permit but also that
generators are shut down in potentially damaging weather
conditions, such as high wind.

•  Support dynamic reconfiguration where parts of the software
are replaced with new versions and where backup instruments
are switched into the system in the event of system failure.

43

