
Types of UML Diagrams

Each UML diagram is designed to let developers and customers view a software system from a

different perspective and in varying degrees of abstraction. UML diagrams commonly created in

visual modeling tools include:1

Use Case Diagram displays the relationship among actors and use cases.1

Class Diagram models class structure and contents using design elements such as classes,

packages and objects. It also displays relationships such as containment, inheritance, associations

and others. 1

Interaction Diagrams

• Sequence Diagram displays the time sequence of the objects participating in the interaction.

This consists of the vertical dimension (time) and horizontal dimension (different objects).1
• Collaboration Diagram displays an interaction organized around the objects and their links to

one another. Numbers are used to show the sequence of messages.1

State Diagram displays the sequences of states that an object of an interaction goes through during

its life in response to received stimuli, together with its responses and actions.1

Activity Diagram displays a special state diagram where most of the states are action states and

most of the transitions are triggered by completion of the actions in the source states. This diagram

focuses on flows driven by internal processing.1

Physical Diagrams

• Component Diagram displays the high level packaged structure of the code itself.

Dependencies among components are shown, including source code components, binary code

components, and executable components. Some components exist at compile time, at link time,

at run times well as at more than one time. 1

• Deployment Diagram displays the configuration of run-time processing elements and the

software components, processes, and objects that live on them. Software component instances

represent run-time manifestations of code units. 1

Use Case Diagrams

A use case is a set of scenarios that describing an interaction between a user and a system. A use

case diagram displays the relationship among actors and use cases. The two main components of a

use case diagram are use cases and actors.

An actor is represents a user or another system that will interact with the system you are

modeling. A use case is an external view of the system that represents some action the user might

perform in order to complete a task.

When to Use: Use Cases Diagrams

Use cases are used in almost every project. The are helpful in exposing requirements and

planning the project. During the initial stage of a project most use cases should be defined,

but as the project continues more might become visible.

How to Draw: Use Cases Diagrams

Use cases are a relatively easy UML diagram to draw, but this is a very simplified

example. This example is only meant as an introduction to the UML and use cases. If you

would like to learn more see the Resources page for more detailed resources on UML.

Start by listing a sequence of steps a user might take in order to complete an action. For

example a user placing an order with a sales company might follow these steps.

1. Browse catalog and select items.

2. Call sales representative.

3. Supply shipping information.

4. Supply payment information.

5. Receive conformation number from salesperson.

These steps would generate this simple use case diagram:

This example shows the customer as a actor because the customer is using the ordering

system. The diagram takes the simple steps listed above and shows them as actions the

customer might perform. The salesperson could also be included in this use case diagram

because the salesperson is also interacting with the ordering system.

From this simple diagram the requirements of the ordering system can easily be

derived. The system will need to be able to perform actions for all of the use cases

listed. As the project progresses other use cases might appear. The customer might have

a need to add an item to an order that has already been placed. This diagram can easily be

expanded until a complete description of the ordering system is derived capturing all of the

requirements that the system will need to perform.

Class Diagrams

Class diagrams are widely used to describe the types of objects in a system and their

relationships. Class diagrams model class structure and contents using design elements such as

classes, packages and objects.2 Class diagrams describe three different perspectives when

designing a system, conceptual, specification, and implementation.1 These perspectives become

evident as the diagram is created and help solidify the design. This example is only meant as an

introduction to the UML and class diagrams. If you would like to learn more see the Resources page

for more detailed resources on UML.

Classes are composed of three things: a name, attributes, and operations. Below is an example of a

class.

Class diagrams also display relationships such as containment, inheritance, associations and

others.2 Below is an example of an associative relationship:

The association relationship is the most common relationship in a class diagram. The association

shows the relationship between instances of classes. For example, the class Order is associated

with the class Customer. The multiplicity of the association denotes the number of objects that can

participate in then relationship.1 For example, an Order object can be associated to only one

customer, but a customer can be associated to many orders.

Another common relationship in class diagrams is a generalization. A generalization is used when

two classes are similar, but have some differences. Look at the generalization below:

In this example the classes Corporate Customer and Personal Customer have some similarities such

as name and address, but each class has some of its own attributes and operations. The class

Customer is a general form of both the Corporate Customer and Personal Customer classes.1 This

allows the designers to just use the Customer class for modules and do not require in-depth

representation of each type of customer.

When to Use: Class Diagrams

Class diagrams are used in nearly all Object Oriented software designs. Use them to

describe the Classes of the system and their relationships to each other.

How to Draw: Class Diagrams

Class diagrams are some of the most difficult UML diagrams to draw. To draw detailed and

useful diagrams a person would have to study UML and Object Oriented principles for a long

time. Therefore, this page will give a very high level overview of the process. To find list of

where to find more information see the Resources page.

Before drawing a class diagram consider the three different perspectives of the system the

diagram will present; conceptual, specification, and implementation. Try not to focus on one

perspective and try see how they all work together.

When designing classes consider what attributes and operations it will have. Then try to

determine how instances of the classes will interact with each other. These are the very first

steps of many in developing a class diagram. However, using just these basic techniques

one can develop a complete view of the software system.

This example is only meant as an introduction to the UML and use cases. If you would like

to learn more see the Resources page for more detailed resources on UML.

Interaction Diagrams

Interaction diagrams model the behavior of use cases by describing the way groups of objects

interact to complete the task. The two kinds of interaction diagrams are sequence and

collaboration diagrams. This example is only meant as an introduction to the UML and interaction

diagrams. If you would like to learn more see the Resources page for a list of more detailed

resources on UML.

When to Use: Interaction Diagrams

Interaction diagrams are used when you want to model the behavior of several objects in a

use case. They demonstrate how the objects collaborate for the behavior. Interaction

diagrams do not give a in depth representation of the behavior. If you want to see what a

specific object is doing for several use cases use a state diagram. To see a particular

behavior over many use cases or threads use an activity diagrams. 1

How to Draw: Interaction Diagrams

Sequence diagrams, collaboration diagrams, or both diagrams can be used to demonstrate

the interaction of objects in a use case. Sequence diagrams generally show the sequence of

events that occur. Collaboration diagrams demonstrate how objects are statically

connected. Both diagrams are relatively simple to draw and contain similar elements. 1

Sequence diagrams:

Sequence diagrams demonstrate the behavior of objects in a use case by describing

the objects and the messages they pass. the diagrams are read left to right and

descending. The example below shows an object of class 1 start the behavior by

sending a message to an object of class 2. Messages pass between the different

objects until the object of class 1 receives the final message.

Below is a slightly more complex example. The light blue vertical rectangles the

objects activation while the green vertical dashed lines represent the life of the

object. The green vertical rectangles represent when a particular object has

control. The represents when the object is destroyed. This diagrams also shows

conditions for messages to be sent to other object. The condition is listed between

brackets next to the message. For example, a [condition] has to be met before the

object of class 2 can send a message() to the object of class 3.

The next diagram shows the beginning of a sequence diagram for placing an

order. The object an Order Entry Window is created and sends a message to an

Order object to prepare the order. Notice the the names of the objects are followed

by a colon. The names of the classes the objects belong to do not have to be

listed. However the colon is required to denote that it is the name of an object

following the objectName:className naming system.

Next the Order object checks to see if the item is in stock and if the [InStock]

condition is met it sends a message to create an new Delivery Item object.

The next diagrams adds another conditional message to the Order object. If the

item is [OutOfStock] it sends a message back to the Order Entry Window object

stating that the object is out of stack.

This simple diagram shows the sequence that messages are passed between

objects to complete a use case for ordering an item.

Collaboration diagrams:

Collaboration diagrams are also relatively easy to draw. They show the relationship

between objects and the order of messages passed between them. The objects are

listed as icons and arrows indicate the messages being passed between them. The

numbers next to the messages are called sequence numbers. As the name

suggests, they show the sequence of the messages as they are passed between the

objects. There are many acceptable sequence numbering schemes in UML. A

simple 1, 2, 3... format can be used, as the example below shows, or for more

detailed and complex diagrams a 1, 1.1 ,1.2, 1.2.1... scheme can be used.

The example below shows a simple collaboration diagram for the placing an order

use case. This time the names of the objects appear after the colon, such as :Order

Entry Window following the objectName:className naming convention. This time

the class name is shown to demonstrate that all of objects of that class will behave

the same way.

State Diagrams

State diagrams are used to describe the behavior of a system. State diagrams describe all of the

possible states of an object as events occur. Each diagram usually represents objects of a single

class and track the different states of its objects through the system.

When to Use: State Diagrams

Use state diagrams to demonstrate the behavior of an object through many use cases of the

system. Only use state diagrams for classes where it is necessary to understand the

behavior of the object through the entire system. Not all classes will require a state diagram

and state diagrams are not useful for describing the collaboration of all objects in a use

case. State diagrams are other combined with other diagrams such as interaction diagrams

and activity diagrams. 1

How to Draw: State Diagrams

State diagrams have very few elements. The basic elements are rounded boxes

representing the state of the object and arrows indicting the transition to the next state. The

activity section of the state symbol depicts what activities the object will be doing while it is in

that state.

All state diagrams being with an initial state of the object. This is the state of the object when

it is created. After the initial state the object begins changing states. Conditions based on

the activities can determine what the next state the object transitions to.

Below is an example of a state diagram might look like for an Order object. When the object

enters the Checking state it performs the activity "check items." After the activity is

completed the object transitions to the next state based on the conditions [all items available]

or [an item is not available]. If an item is not available the order is canceled. If all items are

available then the order is dispatched. When the object transitions to the Dispatching state

the activity "initiate delivery" is performed. After this activity is complete the object transitions

again to the Delivered state.

State diagrams can also show a super-state for the object. A super-state is used when many

transitions lead to the a certain state. Instead of showing all of the transitions from each

state to the redundant state a super-state can be used to show that all of the states inside of

the super-state can transition to the redundant state. This helps make the state diagram

easier to read.

The diagram below shows a super-state. Both the Checking and Dispatching states can

transition into the Canceled state, so a transition is shown from a super-state named Active

to the state Cancel. By contrast, the state Dispatching can only transition to the Delivered

state, so we show an arrow only from the Dispatching state to the Delivered state.

Activity Diagrams

Activity diagrams describe the workflow behavior of a system. Activity diagrams are similar to state

diagrams because activities are the state of doing something. The diagrams describe the state of

activities by showing the sequence of activities performed. Activity diagrams can show activities that

are conditional or parallel.

When to Use: Activity Diagrams

Activity diagrams should be used in conjunction with other modeling techniques such as

interaction diagrams and state diagrams. The main reason to use activity diagrams is to

model the workflow behind the system being designed. Activity Diagrams are also useful for:

analyzing a use case by describing what actions need to take place and when they should

occur; describing a complicated sequential algorithm; and modeling applications with

parallel processes. 1

However, activity diagrams should not take the place of interaction diagrams and state

diagrams. Activity diagrams do not give detail about how objects behave or how objects

collaborate. 1

How to Draw: Activity Diagrams

Activity diagrams show the flow of activities through the system. Diagrams are read from top

to bottom and have branches and forks to describe conditions and parallel activities. A fork

is used when multiple activities are occurring at the same time. The diagram below shows a

fork after activity1. This indicates that both activity2 and activity3 are occurring at the same

time. After activity2 there is a branch. The branch describes what activities will take place

based on a set of conditions. All branches at some point are followed by a merge to indicate

the end of the conditional behavior started by that branch. After the merge all of the parallel

activities must be combined by a join before transitioning into the final activity state.

Below is a possible activity diagram for processing an order. The diagram shows the flow of

actions in the system's workflow. Once the order is received the activities split into two

parallel sets of activities. One side fills and sends the order while the other handles the

billing. On the Fill Order side, the method of delivery is decided conditionally. Depending

on the condition either the Overnight Delivery activity or the Regular Delivery activity is

performed. Finally the parallel activities combine to close the order.

1

Physical Diagrams

There are two types of physical diagrams: deployment diagrams and component

diagrams. Deployment diagrams show the physical relationship between hardware and software in

a system. Component diagrams show the software components of a system and how they are

related to each other. These relationships are called dependencies. 1

When to Use: Physical Diagrams

Physical diagrams are used when development of the system is complete. Physical

diagrams are used to give descriptions of the physical information about a system.

How to Draw: Physical Diagrams

Many times the deployment and component diagrams are combined into one physical

diagram. A combined deployment and component diagram combines the features of both

diagrams into one diagram.

The deployment diagram contains nodes and connections. A node usually represents a

piece of hardware in the system. A connection depicts the communication path used by the

hardware to communicate and usually indicates a method such as TCP/IP.

The component diagram contains components and dependencies. Components represent

the physical packaging of a module of code. The dependencies between the components

show how changes made to one component may affect the other components in the

system. Dependencies in a component diagram are represented by a dashed line between

two or more components. Component diagrams can also show the interfaces used by the

components to communicate to each other. 1

The combined deployment and component diagram below gives a high level physical

description of the completed system. The diagram shows two nodes which represent two

machines communicating through TCP/IP. Component2 is dependant on component1, so

changes to component 2 could affect component1. The diagram also depicts component3

interfacing with component1. This diagram gives the reader a quick overall view of the entire

system.

