Chapter 4

Design Principles |
Correctness and Robustness

Software Architecture — Design Principles |

Process Phase Affected by This Chapter

Requirements
Analysis

Design

Framework etailed Design

- less affected Implementation

\s
\

-!‘\5513626'

] .] Software Architecture — Design Principles |

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Key Concept: - Correctness <

Goal: That each artifact satisfies designated
requirements, and that together they satisfy
all of the application’ s requirements.

b

Software Architecture — Design Principles |

g

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Sufficient Designs: Terminology and Rationale

A design sufficient
to implement the ~ a correct design

requirements. Sometimes
called ...

Minimum
goal:

|t follows that ...

v

the design must be
entirely understandable

A common way to achieve
this is to make ...

the design
very modular cam,

I l Software Architecture — Design Principles | %’%

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Key Concept:

- Correctness by Informal Methods <

Simplify and modularize designs until they convince.

B

M

-- with variables mileage, VehiclelD,
(o ETIWLNTIdo) 1 [o) o)/ value, originalPrice, and type:
1) mileage > 0
2) mileage < 1000000
3) vehiclelD has at least 8 characters
4) value >= -300
($300 is the disposal cost of a worthless automobile)
9) originalPrice >= 0
6) (type == “REGULAR” && value <= originalPrice) ||

49 == “VINTAGE” && value >= originalPrice)

'&Q’\ s"".o\
Software Architecture — DeS|gn Principles | AQ"

Adp ted from Sofiware Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Shipment
setVehicle()
Interfaces perishable()

getWidth()
1o0f 2 printRoute()
describeType()
getLength()
getDuration()
setType()

Introducing

Software Architecture — Design Principles |

B

M 2

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

i | Dimensions | { Transporiationtleans || GoodsTyoe |
LT RN || “oet\idth() || getDuration() | | describeType() |
2 of 2 |getLength() | | setVehicle() | - setType() |
oo |1geWeight) |l prinRoute) || perishable(
Shipment
— Forms using
interfaces
Dimensions
Shipment TransportationMeans
GoodsType

e

Software Architecture — Design Principles |

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

AR

Package Interfaces

/O Pricing

purchases
Furniture
. «singleton»
Clothing Purchasesl|F <
Appliance

O Selection

\O ClothingTryout

g

M

Software Architecture — Design Principles | 3?; .
’"’/ 9

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

chatServer Example of Package

Interfaces
Conversation _
Conversation-
services
ConversationManager
Participant- _
ServerComm services chatClient
Display
Message- O
oillin reception
) ClientComm
ACCOUﬂting Bill _O Financial

Q\S

I l Software Architecture — Design Principles | %’%

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

10

Key Concept: - Interfaces <

-- collections of function prototypes:
Make designs more understandable.

B

Software Architecture — Design Principles |

g

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Domain vs. Non-Domain Classes

« Domain classes: Particular to the application
— Examples: BankCustomer, BankTransaction, Teller
— Typically not GUI classes

— Sufficient to classify all requirements (see chapter xx)

 Non-Domain classes: Generic
— Examples: abstract classes, utility classes

— Arise from design and implementation considerations

Q\S

] {(Software Architecture — Design Principles | 3?;
¢ / 12

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Alternative Modularizations Application tracking trajectory
of rocket carrying orbit-bound

satellite into position

Alternative 1

|
| |
I | r———_——— - —_ - ———— ———
| - | | Alternative 2
: mechanics : |
|
: : : control
| . L
| | position : :
|
| | |
| | ' |trajectory
| | |
| | ground control I :
| L
|
: i : weather
| onBoardNavigation | |
|
| | |
|

Improving Robustness: Sources of

Errors

Protection from faulty Input
o Userinput
o Input, not from user
« Data communication
* Function calls made by other applications
Protection from developer error
— Faulty design
— Faulty implementation

Q\S

] .] Software Architecture — Design Principles | 3?;
¢ / 14

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Constraints on Parameters

Example:
int computeArea(int aLength, int aBreadth) { ... }
QO Capture parameter constraints in classes if feasible
int computeArea(RectangleDimension a RectangleDimension)
O Specify all parameter constraints in method comments
aLength > 0 and
aBreadth > 0 and
aLength >= aBreadth
L Callers obey explicit requirements on parameters
o Problem is method programmers have no control over callers
U Check constraints first within the method code
if(aLength <=0)
— Throw exception if this is a predictable occurrence
— Otherwise abort if possible

— Otherwise return default if it makes sense in context
« And generate warning or log to a file

Q\S

] .] Software Architecture — Design Principles | 3?;
4 / 15

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Key Concept: - Robustness <

-- is promoted by verifying data
values hefore using them.

B

Software Architecture — Design Principles |

g

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Wrapping Parameters

Replace int computeArea(int aLength, int aBreadth)
{-}
with int computeArea(Rectangle aRectangle)

{-}

-- where class Rectangle

{

."Rectangle(int aLength, int aBreadth)

{ if(aLength > 0) this.length = aLength;
else

}

Software Architecture — Design Principles |

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

M 2

Key Concept: 2> Robustness <

-- is promoted by enforcing intentions.

] .] Software Architecture — Design Principles |

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

How Much Design Detail Before Initial Coding?

100%
Inexperienced
designer
Recommen-
ded % of
design detail
before
starting to \ /
code Diminishing ability
o of designer to
envisage
Experienced consequences of
| |/ designer design decision.
0%

Very simple

Type of application

Veery complex
19

Video Store Application: Sufficient Classes?

Video CheckQutDurationDisplay

Customer CheckOutDisplay

BarCodeReader RegisterNewVideoDisplay

Q\S

I l Software Architecture — Design Principles | %’%

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Summary of This Chapter

L Correctness of a Design or Code
o Supports the requirements
o In general, many correct designs exist

O Robustness of a Design or Code

o Absorbs errors
o =--of the user
o --of developers

Q\S

] .] Software Architecture — Design Principles | 3?;
' / 21

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

