
Software Architecture – Design Principles II
1

Chapter 5
Design Principles II:

Flexibility, Reusability, and Efficiency

Software Architecture – Design Principles II
2

Process Phase Affected by This Chapter

Requirements
Analysis

Design

Implementation

Architecture Framework Detailed Design

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
3

Aspects of Flexibility

q … adding more of the same kind of functionality
Example (banking application): handle more kinds of accounts

without having to change the existing design or code

q … adding different functionality
Example: add withdraw function to existing deposit functionality

•  … changing functionality
Example: allow overdrafts

Anticipate …

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
4

Registering Website Members

WebSite
register() Member

0..n members

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
5

Registering Website Members Flexibly

WebSite Member 0..n

StandardMember XMember YMember

members

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
6

Adding Functionality to an Application:
Alternative Situations

Within the scope of …
1.  … a list of related functions

Example: add print to an air travel itinerary functions

2.  ... an existing base class
Example: add “print road- and ship- to air itinerary ”

3.  ... neither
Example: add “print itineraries for combinations of air, road and

ship transportation”

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
7

Adding Functionality When a Base
Class Exists

Trip
printItinerary()

StandardTrip
printItinerary()

SomeApplicationClass

Method(s) call
printItinerary()

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
8

Adding Functionality Through a Base
Class

Trip
printItinerary()

SeaTrip
printItinerary()

SomeApplicationClass

LandTrip
printItinerary()

StandardTrip
printItinerary()

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
9

Additional Type of Flexibility
Flexibility Aspect: ability to … Described in …

… create objects in variable
configurations determined at runtime “Creational” design patterns –

… create variable trees of objects or
other structures at runtime “Structural” design patterns –

… change, recombine, or otherwise
capture the mutual behavior of a set of
objects “Behavioral” design patterns –

… create and store a possibly complex
object of a class. Component technology –

… configure objects of predefined
complex classes – or sets of classes –
so as to interact in many ways Component technology –

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
10

Key Concept: à Flexibility ß

We design flexibly, introducing parts,
because change and reuse are likely.

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
11

Making a Method Re-usable

q Specify completely
–  Preconditions etc
–  Avoid unnecessary coupling with the enclosing class
–  Make static if feasible
–  Include parameterization

•  i.e., make the method functional
•  But limit the number of parameters

q Make the names expressive
–  Understandability promotes re-usability

q Explain the algorithm
–  Re-users need to know how the algorithm works

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
12

Making a Class Re-usable

q Describe the class completely

q Make the class name and functionality match
a real world concept

q Define a useful abstraction
–  attain broad applicability

q Reduce dependencies on other classes
–  Elevate dependencies in hierarchy

alternatives

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
13

Reducing Dependency Among Classes

Customer

Replace …

Piano

with …

Customer Piano PianoOrder

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
14

Leveraging Inheritance,
Aggregation & Dependency for the

Re-use of Class Combinations Customer
computeBill()

RegularCustomer
computeBill()

Customer
computeBill()

Bill
compute()

Customer
computeBill(Orders)

Orders
value()

(1) Leveraging inheritance

(3) Leveraging
dependency

(2) Leveraging
aggregation

Customer
computeBill()

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
15

Basic Approaches to Time Efficiency

q Design for Other Criteria, Then Consider Efficiency
–  Design for flexibility, reusability , …
–  At some point, identify inefficient places
–  Make targeted changes to improve efficiency

q Design for Efficiency From the Start
–  Identify key efficiency requirements up front
–  Design for these requirements during all phases

q Combine These Two Approaches
–  Make trade-offs for efficiency requirements during design
–  Address remaining efficiency issues after initial design

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
16

Space-Time Trade-offs

Space

Time to process one item

Typical target

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
17

Space-Time-Development Trade-offs

Space Time

Convenience of Development

Limiting
acceptable

value

unacceptable
values

better than
acceptable

values

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
18

Impediments to Speed Efficiency

•  Loops
–  while, for, do

•  Remote operations
–  Requiring a network

•  LAN
•  The Internet

•  Function calls
–  -- if the function called results in the above

•  Object creation

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
19

Trade-off Between
Number of Remote Calls and

Volume Retrieved at Each Call

Number of remote accesses

Volume retrieved
at each access

Typical target

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
20

Storage Locations

Code
base

Runtime
RAM

Disk
storage
required
at
runtime

Disk
storage
required
between
runtimes

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
21

Attaining Storage Efficiency

q Store only the data needed
–  Trades off storage efficiency

 vs. time to extract and re-integrate

q Compress the data
–  Trades off storage efficiency

 vs. time to compress and decompress

q Store in order of relative frequency
–  Trades off storage efficiency

 vs. time to determine location

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
22

Trading off Robustness, Flexibility,
Efficiency and Reusability

1A. Extreme Programming Approach
 Design for sufficiency only

1B. Flexibility-driven Approach
 Design for extensive future requirements
 Reuse usually a by-product

2. Ensure robustness
3. Provide enough efficiency

 Compromise re-use etc. as necessary to
 attain efficiency requirements

- or -

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
23

 Extreme vs. non-Extreme

+ Job done faster
(usually)

+ Scope clear
+ More likely to be efficient

- Future applications less

likely to use the work
- Refactoring for expanded

requirements can be
expensive

+ Future applications more
likely to use parts

 + Accommodates changes
in requirements

- Scope less clear
- Potential to waste effort
- Efficiency requires more

special attention

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
24

A More Flexible Design for Calculator Application

CommandLineCalculator
main()

executeAdditions()
solicitNumberAccounts()
getAnInputFromUser()

interactWithUser()

Existing Design New Design

Calculator
solicitNumAccounts()

CalcDisplay
display()

CalcOperation
execute()

Add Multiply Divide

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Software Architecture – Design Principles II
25

Summary of This Chapter

q Flexibility
o  == readily changeable

q Reusability
o  in other applications

q Efficiency
o  in time

o  in space

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

