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Basic Concepts 
 
 
• We are now taking a deeper look at system dynamics 
 
 
• This will be a low-level view 

- We will be looking inside the (classes of) objects 
themselves 

 
 
• Some of the dynamic behavior will be specified in terms 
of sequencing / timing 
 
 
• Some of the dynamic behavior will be specified in terms 
of functions (transformations / computations) 
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The State Diagram 
 
 
• We will use the state diagram to specify the sequencing / 
timing behavior of objects in a class 

- States 
- Events 
- Transitions 

 
 
• Generally speaking, there should be one state diagram for 
every class 

- But this is not prescribed by UML, it allows state 
diagrams to describe the system at any level 
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State 
 
 
• State 

- A state represents a discrete, continuous segment of 
time wherein the object’s behavior will be stable 

- The object will stay in a state until it is stimulated to 
change by an event 

 
 
• Notation 
 

Opened
Overdrawn

Can specify activities here     

Closed
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Event 
 
 
• An event is an instant in time that may be significant to 
the behavior of the objects in a class 

- Events can have associated arguments 
 
 
• Events tend to represent 

- Commands or requests from other objects 
- Significant times (it’s time to...) 
- Circumstances or happenings in other objects (the 

temperature monitor notices the temperature rising 
over a safety setpoint) 

- “Custodial” (creation, deletion, simple update) 
 
 
• Notation 

- Events are written simply as text strings 
 
 Open 
 Deposit(Amount) 
 Withdraw(Amount) 
 Close 
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Transition 
 
 
• A transition shows a valid progression in state 

- Simply, “if you were in this state and you saw this 
event, that’s the state you would end up in” 

 
• Examples 

- If a Bank Account was Closed and it saw an Open 
event, it would end up in the Opened state 

- If the account was Opened and it saw a Close event it 
would end up in the Closed state 

 
 
• Notation 
 

OpenedClosed

Open

Close  
 
 
• As far as analysis is concerned, we can say that a 
transition takes place in essentially zero time regardless of 
how complicated actions on that transition (below) are 
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Additional Concepts and Notations 
 
 
• Initial State 

- The initial state (there can be only one) is the state 
that a new object will be in immediately following its 
creation 

 

OpenedClosed

Open

Close  
 
 
• Final State 

- A final state (there can be many) is a state that 
represents the object going out of existence 

 

OpenedClosed

Open

CloseDelete  
 
 
• Self Transitions 

- Sometimes an object is required to perform some 
action (below) when it recognizes an event, but it ends 
up in the same state it started in 

* Technically, it never really leaves the state 
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OpenedClosed

Open

CloseDelete

Deposit(Amt)

Later, we can put 
some action on the 

self-transition  
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Additional Concepts and Notations 
(cont) 

 
 
• Guarded Transitions 

- A guarded transition is a shorthand notation that says 
“in addition to the event happening, the guard 
condition must also be true for the transition to take 
place” 

- When the same event causes multiple transitions out 
of some state, the guards should be mutually exclusive 

 

Overdrawn

Closed

Open
Close

Opened
Deposit(Amt)

Withdraw(Amt) 
[Amt<=Balance]

Withdraw(Amt) 
[Amt>Balance]

Deposit(Amt) 
[Balance+Amt>=0.00]

Deposit(Amt) 
[Balance+Amt<0.00]

Delete

 
 
 
• Unlabeled Transitions 

- An unlabeled transition means the transition is taken 
when the activity (processing, below) completes 
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Some State

Do/Some Activity

Some 
Other 
State
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Hierarchical States 
 
 
• UML uses the StateChart notation originally developed 
by Harel [Harel87] 
 
 
• Superstates 

- You may find a set of states that have a common 
response (transition) to a particular event 

 
A

B

C

D

1

2

3

4

E
4

4

A

B

C

D

1

2

3

E

BCD

4

 
 
 
• Concurrent State Diagrams 
 

Checking

Waiting

Dispatching

Authorized

Rejected

Cancelled

Delivered

Authorizing

Held
Ok

Ok
Done

FinalInitial

Cancel

Reject

In Work

 
 
[Harel87] 
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David Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of 
Computer Programming, Vol 8, 1987 
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Actions and Activities 
 
 
• Actions and activities are used to specify the functional 
(transformational / computational) behavior of objects in a 
class 

- Actions 
- Activities 
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Action 
 
 
• An Action is the UML way to specify that some discrete 
amount of work gets done as an object makes a transition 

- The work is expected to be a one-shot computation 
 
 
• Notation 

- Append “/action-name” to the “event[guard]” for 
every transition that has an action 

 

Overdrawn

Closed

Open/Set Bal
Close/Refund

Opened Deposit(Amt) 
/IncrsBalance

Withdraw(Amt) 
[Amt<=Balance] 
/DecrsBalance

Withdraw(Amt) 
[Amt>Balance] 
/DecrsBalance

Deposit(Amt) 
[Amt>=Balance] 

/IncrsBalance

Deposit(Amt) 
[Amt<Balance] 
/IncrsBalance

Delete

 
 
 
• An alternative notation to self-transitions is to put event-
name(arg-list)/action-name in the lower compartment of a state 
 
 
• When you want to be sure that every entry into, or every 
exit out of, some given state has the same action then you 
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can put entry/action-name or exit/action-name in the lower 
compartment of a state 
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Activity 
 
 
• An Activity is the UML way to specify that some 
relatively long-term amount of work gets done while an 
object is in a state 

- The work is continuous and interruptible (it stops 
when you exit the state) 

 
 
• Notation 

- Compartmentalize the state 
- Include “do/activity-name” in the lower compartment 

of every state that has an activity 
 

Driver Control

Brake
Cruise[Speed>30] 

/SaveSpeed
Resumse 

[Speed>30]

Accelerating

do/MaintainSpeed 
do/IncreaseSpeed

Cruise Control

do/MaintainSpeed

Brake

Accelerate
End Accelerate
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Action Language(s) for UML 
 
 
• The OMG is currently involved in extending UML to 
provide precise, software-platform independent languages 
for specifying the details of actions and activities 
 
 
• The language(s) would be partially algorithmic (and thus 
be a step into design),but would be very high-level 

- No traditional data structures (tables, arrays, linked 
lists), just values and collections 

- No traditional control structures (for-next, ...) 
functions would be applied to an entire input set 

 
 
• Languages of this sort would enable 

- Executable analysis models 
- Complete code generation from analysis models 
- Formal proofs-of-correctness of analysis models 

 
 
• See also [Mellor98] 
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[Mellor98] 
Stephen Mellor, Steve Tockey, Rodolphe Arthaud, Philippe LeBlanc, “Software-
platform-independent, Precise Action Specifications for UML”, Proceedings of 
<<UML>> ‘98 Conference, Organized by ESSAIM and the University of Haute-Alsace, 
Mulhouse, France, June 3-4, 1998 
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Key Points 
 
 
• We are now taking a deeper look at system dynamics 
 
• This is a low-level view 

- Looking inside the (classes of) objects themselves 
 
• State diagrams specify the sequencing / timing behavior 
of objects in a class 

- States 
- Events 
- Transitions 

 
• Generally speaking, there should be one state diagram for 
every class 
 
• Actions and activities specify the functional 
(transformational / computational) behavior of objects in a 
class 

- Actions 
- Activities 

 


