
Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-1

State Diagrams, Actions, and Activities

• Basic Concepts

• The State Diagram

• State

• Event

• Transition

• Additional Concepts and Notations

• Hierarchical States

• Action

• Activity

• Action Language(s) for UML

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-2

Basic Concepts

• We are now taking a deeper look at system dynamics

• This will be a low-level view

- We will be looking inside the (classes of) objects
themselves

• Some of the dynamic behavior will be specified in terms
of sequencing / timing

• Some of the dynamic behavior will be specified in terms
of functions (transformations / computations)

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-3

The State Diagram

• We will use the state diagram to specify the sequencing /
timing behavior of objects in a class

- States
- Events
- Transitions

• Generally speaking, there should be one state diagram for
every class

- But this is not prescribed by UML, it allows state
diagrams to describe the system at any level

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-4

State

• State

- A state represents a discrete, continuous segment of
time wherein the object’s behavior will be stable

- The object will stay in a state until it is stimulated to
change by an event

• Notation

Opened
Overdrawn

Can specify activities here

Closed

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-5

Event

• An event is an instant in time that may be significant to
the behavior of the objects in a class

- Events can have associated arguments

• Events tend to represent

- Commands or requests from other objects
- Significant times (it’s time to...)
- Circumstances or happenings in other objects (the

temperature monitor notices the temperature rising
over a safety setpoint)

- “Custodial” (creation, deletion, simple update)

• Notation

- Events are written simply as text strings

 Open
 Deposit(Amount)
 Withdraw(Amount)
 Close

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-6

Transition

• A transition shows a valid progression in state

- Simply, “if you were in this state and you saw this
event, that’s the state you would end up in”

• Examples

- If a Bank Account was Closed and it saw an Open
event, it would end up in the Opened state

- If the account was Opened and it saw a Close event it
would end up in the Closed state

• Notation

OpenedClosed

Open

Close

• As far as analysis is concerned, we can say that a
transition takes place in essentially zero time regardless of
how complicated actions on that transition (below) are

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-7

Additional Concepts and Notations

• Initial State

- The initial state (there can be only one) is the state
that a new object will be in immediately following its
creation

OpenedClosed

Open

Close

• Final State

- A final state (there can be many) is a state that
represents the object going out of existence

OpenedClosed

Open

CloseDelete

• Self Transitions

- Sometimes an object is required to perform some
action (below) when it recognizes an event, but it ends
up in the same state it started in

* Technically, it never really leaves the state

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-8

OpenedClosed

Open

CloseDelete

Deposit(Amt)

Later, we can put
some action on the

self-transition

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-9

Additional Concepts and Notations
(cont)

• Guarded Transitions

- A guarded transition is a shorthand notation that says
“in addition to the event happening, the guard
condition must also be true for the transition to take
place”

- When the same event causes multiple transitions out
of some state, the guards should be mutually exclusive

Overdrawn

Closed

Open
Close

Opened
Deposit(Amt)

Withdraw(Amt)
[Amt<=Balance]

Withdraw(Amt)
[Amt>Balance]

Deposit(Amt)
[Balance+Amt>=0.00]

Deposit(Amt)
[Balance+Amt<0.00]

Delete

• Unlabeled Transitions

- An unlabeled transition means the transition is taken
when the activity (processing, below) completes

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-10

Some State

Do/Some Activity

Some
Other
State

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-11

Hierarchical States

• UML uses the StateChart notation originally developed
by Harel [Harel87]

• Superstates

- You may find a set of states that have a common
response (transition) to a particular event

A

B

C

D

1

2

3

4

E
4

4

A

B

C

D

1

2

3

E

BCD

4

• Concurrent State Diagrams

Checking

Waiting

Dispatching

Authorized

Rejected

Cancelled

Delivered

Authorizing

Held
Ok

Ok
Done

FinalInitial

Cancel

Reject

In Work

[Harel87]

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-12

David Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of
Computer Programming, Vol 8, 1987

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-13

Actions and Activities

• Actions and activities are used to specify the functional
(transformational / computational) behavior of objects in a
class

- Actions
- Activities

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-14

Action

• An Action is the UML way to specify that some discrete
amount of work gets done as an object makes a transition

- The work is expected to be a one-shot computation

• Notation

- Append “/action-name” to the “event[guard]” for
every transition that has an action

Overdrawn

Closed

Open/Set Bal
Close/Refund

Opened Deposit(Amt)
/IncrsBalance

Withdraw(Amt)
[Amt<=Balance]
/DecrsBalance

Withdraw(Amt)
[Amt>Balance]
/DecrsBalance

Deposit(Amt)
[Amt>=Balance]

/IncrsBalance

Deposit(Amt)
[Amt<Balance]
/IncrsBalance

Delete

• An alternative notation to self-transitions is to put event-
name(arg-list)/action-name in the lower compartment of a state

• When you want to be sure that every entry into, or every
exit out of, some given state has the same action then you

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-15

can put entry/action-name or exit/action-name in the lower
compartment of a state

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-16

Activity

• An Activity is the UML way to specify that some
relatively long-term amount of work gets done while an
object is in a state

- The work is continuous and interruptible (it stops
when you exit the state)

• Notation

- Compartmentalize the state
- Include “do/activity-name” in the lower compartment

of every state that has an activity

Driver Control

Brake
Cruise[Speed>30]

/SaveSpeed
Resumse

[Speed>30]

Accelerating

do/MaintainSpeed
do/IncreaseSpeed

Cruise Control

do/MaintainSpeed

Brake

Accelerate
End Accelerate

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-17

Action Language(s) for UML

• The OMG is currently involved in extending UML to
provide precise, software-platform independent languages
for specifying the details of actions and activities

• The language(s) would be partially algorithmic (and thus
be a step into design),but would be very high-level

- No traditional data structures (tables, arrays, linked
lists), just values and collections

- No traditional control structures (for-next, ...)
functions would be applied to an entire input set

• Languages of this sort would enable

- Executable analysis models
- Complete code generation from analysis models
- Formal proofs-of-correctness of analysis models

• See also [Mellor98]

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-18

[Mellor98]
Stephen Mellor, Steve Tockey, Rodolphe Arthaud, Philippe LeBlanc, “Software-
platform-independent, Precise Action Specifications for UML”, Proceedings of
<<UML>> ‘98 Conference, Organized by ESSAIM and the University of Haute-Alsace,
Mulhouse, France, June 3-4, 1998

Construx Software Object Modeling with UML

States, Actions, & Activities (14-Jan-01) Page 6-19

Key Points

• We are now taking a deeper look at system dynamics

• This is a low-level view

- Looking inside the (classes of) objects themselves

• State diagrams specify the sequencing / timing behavior
of objects in a class

- States
- Events
- Transitions

• Generally speaking, there should be one state diagram for
every class

• Actions and activities specify the functional
(transformational / computational) behavior of objects in a
class

- Actions
- Activities

