
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 1!

Chapter 3!
n  Agile Development!

Slide Set to accompany 
Software Engineering: A Practitioner’s Approach, 7/e "
by Roger S. Pressman 
 
Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman 
 

CS435: Introduction to Software Engineering!
"

" " " " " " "Dr. M. Zhu !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 2!

The Manifesto for  
Agile Software Development!

“We are uncovering better ways of developing 
software by doing it and helping others do it.  
Through this work we have come to value: !

• Individuals and interactions over processes 
and tools !
• Working software over comprehensive 
documentation !
• Customer collaboration over contract 
negotiation !
• Responding to change over following a plan !

That is, while there is value in the items on the 
right, we value the items on the left more.”!

Kent Beck et al!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 3!

What is “Agility”?!
n  Effective (rapid and adaptive) response to change (team members, new 

technology, requirements)!
n  Effective communication  in structure and attitudes among all team 

members, technological and business people, software engineers and 
managers。 !

n  Drawing the customer into the team. Eliminate “us and them” attitude. 
Planning in an uncertain world has its limits and plan must be flexible. !

n  Organizing a team so that it is in control of the work performed!
n  Eliminate all but the most essential work products and keep them lean.!
n  Emphasize an incremental delivery strategy as opposed to intermediate 

products that gets working software to the customer as rapidly as feasible. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 4!

What is “Agility”?!

Yielding …!
n  Rapid, incremental delivery of software!
n  The development guidelines stress delivery over 

analysis and design although these activates are not 
discouraged, and active and continuous 
communication between developers and customers. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 5!

Why and What Steps are“Agility” 
important?!

n  Why? The modern business environment is fast-paced 
and ever-changing. It represents a reasonable alternative 
to conventional software engineering for certain classes 
of software projects. It has been demonstrated to deliver 
successful systems quickly. !

n  What? May be termed as “software engineering lite” The 
basic activities- communication, planning, modeling, 
construction and deployment remain. But they morph into 
a minimal task set that push the team toward construction 
and delivery sooner. !

n  The only really important work product is an operational 
“software increment” that is delivered. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 6!

Agility and the Cost of Change!

n  Conventional wisdom is that the cost of change increases nonlinearly 
as a project progresses. It is relatively easy to accommodate a change 
when a team is gathering requirements early in a project. If there are 
any changes, the costs of doing this work are minimal. But if the middle 
of validation testing, a stakeholder is requesting a major functional 
change. Then the change requires a modification to the architectural 
design, construction of new components, changes to other existing 
components, new testing and so on. Costs escalate quickly. !

!
n  A well-designed agile process may “flatten” the cost of change curve 

by coupling incremental delivery with agile practices such as 
continuous unit testing and pair programming. Thus team can 
accommodate changes late in the software project without dramatic 
cost and time impact. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 7!

Agility and the Cost of Change!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 8!

An Agile Process!
n  Is driven by customer descriptions of what is required 

(scenarios). Some assumptions:!
n  Recognizes that plans are short-lived (some requirements will persist, some 

will change. Customer priorities will change) !
n  Develops software iteratively with a heavy emphasis on construction 

activities (design and construction are interleaved, hard to say how much design is 
necessary before construction. Design models are proven as they are created. )!

n  Analysis, design, construction and testing are not predictable. !

n  Thus has to Adapt as changes occur due to unpredictability!
n  Delivers multiple ‘software increments’, deliver an 

operational prototype or portion of an OS to collect customer 
feedback for adaption. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 9!

Agility Principles - I!
1. !Our highest priority is to satisfy the customer through early 

and continuous delivery of valuable software.!
2. !Welcome changing requirements, even late in development. 

Agile processes harness change for the customer's competitive 
advantage. !

3. !Deliver working software frequently, from a couple of weeks 
to a couple of months, with a preference to the shorter 
timescale. !

4. !Business people and developers must work together daily 
throughout the project.  !

5. !Build projects around motivated individuals. Give them the 
environment and support they need, and trust them to get the 
job done. !

6. !The most efficient and effective method of conveying 
information to and within a development team is face–to–face 
conversation.!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 10!

Agility Principles - II!
7. !Working software is the primary measure of progress. !
8. !Agile processes promote sustainable development. The 

sponsors, developers, and users should be able to 
maintain a constant pace indefinitely.  !

9. !Continuous attention to technical excellence and good 
design enhances agility.  !

10. Simplicity – the art of maximizing the amount of work 
not done – is essential.  !

11. The best architectures, requirements, and designs 
emerge from self–organizing teams. !

12. At regular intervals, the team reflects on how to become 
more effective, then tunes and adjusts its behavior 
accordingly.!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 11!

Human Factors!

n  the process molds to the needs of the people and team, not the 
other way around!

n  key traits must exist among the people on an agile team and 
the team itself:!
n  Competence. ( talent, skills, knowledge)!
n  Common focus. ( deliver a working software increment )!
n  Collaboration. ( peers and stakeholders) !
n  Decision-making ability. ( freedom to control its own destiny) !
n  Fuzzy problem-solving ability.(ambiguity and constant changes, today 

problem may not be tomorrow’s problem)!
n  Mutual trust and respect.!
n  Self-organization. ( themselves for the work done, process for its local 

environment, the work schedule) !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 12!

Extreme Programming (XP)!
n  The most widely used agile process, originally proposed by Kent Beck in 

2004. It uses an object-oriented approach. !
n  XP Planning!

n  Begins with the listening, leads to creation of “user stories” that describes 
required output, features, and functionality. Customer assigns a value(i.e., a 
priority) to each story. !

n  Agile team assesses each story and assigns a cost (development weeks. If more 
than 3 weeks, customer asked to split into smaller stories)!

n  Working together, stories are grouped for a deliverable increment next release. !
n  A commitment  (stories to be included, delivery date and other project matters) 

is made. Three ways: 1. Either all stories will be implemented in a few weeks, 2. high 
priority stories first, or 3. the riskiest stories will be implemented first. !

n  After the first increment “project velocity”, namely number of  stories 
implemented during the first release is used to help define subsequent delivery 
dates for other increments. Customers can add stories, delete existing stories, 
change values of an existing story, split stories as development work proceeds. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 13!

Extreme Programming (XP)!
n  XP Design ( occurs both before and after coding as refactoring is encouraged)!

n  Follows the KIS principle (keep it simple) Nothing more nothing less than the story. !
n  Encourage the use of CRC (class-responsibility-collaborator) cards in an object-oriented 

context. The only design work product of XP. They identify and organize the classes that 
are relevant to the current software increment. (see Chapter 8)!

n  For difficult design problems, suggests the creation of “spike solutions”—a design 
prototype for that portion is implemented and evaluated. !

n  Encourages “refactoring”—an iterative refinement of the internal program design. Does 
not alter the external behavior yet improve the internal structure. Minimize chances of 
bugs. More efficient, easy to read. !

n  XP Coding!
n  Recommends the construction of a unit test for a story before coding commences. So 

implementer can focus on what must be implemented to pass the test. !
n  Encourages “pair programming”. Two people work together at one workstation. Real 

time problem solving, real time review for quality assurance. Take slightly different roles. !
n  XP Testing!

n  All unit tests are executed daily and ideally should be automated. Regression tests are 
conducted to test current and previous components. !

n  “Acceptance tests” are defined by the customer and executed to assess customer visible 
functionality!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 14!

Extreme Programming (XP)!

unit test 
continuous integration 

acceptance testing

pair 
programming

Release

user stories 
   values 
   acceptance test criteria 
iteration plan

simple design 
  CRC cards

spike solutions 
   prototypes

refactoring

software increment
project velocity computed



The XP Debate !!
n  Requirements volatility: customer is an active member of XP team, 

changes to requirements are requested informally and frequently. !
n  Conflicting customer needs: different customers' needs need to be 

assimilated. Different vision or beyond their authority. !
n  Requirements are expressed informally: Use stories and acceptance 

tests are the only explicit manifestation of requirements. Formal 
models may avoid inconsistencies and errors before the system is 
built. Proponents said changing nature makes such models obsolete 
as soon as they are developed. !

n  Lack of formal design: XP deemphasizes the need for architectural 
design. Complex systems need overall structure to exhibit quality and 
maintainability. Proponents said incremental nature limits complexity 
as simplicity is a core value. !

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 15!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 16!

Adaptive Software Development 
(ASD)!

n  Originally proposed by Jim Highsmith (2000) focusing 
on human collaboration and team self-organization as 
a technique to build complex software and system. !

n  ASD — distinguishing  features!
n  Mission-driven planning!
n  Component-based focus!
n  Uses “time-boxing” (See Chapter 24)!
n  Explicit consideration of risks!
n  Emphasizes collaboration for requirements gathering!
n  Emphasizes “learning” throughout the process!



Three Phases of ASD !
n  1. Speculation: project is initiated and adaptive cycle 

planning is conducted. Adaptive cycle planning uses 
project initiation information- the customer’s mission 
statement, project constraints (e.g. delivery date), and 
basic requirements to define the set of release cycles 
(increments) that will be required for the project. Based 
on the information obtained at the completion of the first 
cycle, the plan is reviewed and adjusted so that 
planned work better fits the reality. !

!
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 17!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 18!

Three Phases of ASD !
n  2. Collaborations are used to multiply their talent and creative output 

beyond absolute number (1+1>2). It encompasses communication and 
teamwork, but it also emphasizes individualism, because individual 
creativity plays an important role in collaborative thinking. !

n  It is a matter of trust. 1) criticize without animosity, 2) assist without 
resentments, 3) work as hard as or harder than they do. 4) have the skill 
set to contribute to the work at hand, 5) communicate problems or 
concerns in a way that leas to effective action. !

n  3. Learning: As members of ASD team begin to develop the 
components, the emphasis is on “learning”. Highsmith argues that 
software developers often overestimate their own understanding of the 
technology, the process, and the project and that learning will help them 
to improve their level of real understanding. Three ways: focus groups, 
technical reviews and project postmortems. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 19!

Adaptive Software Development!
adaptive cycle planning 
  uses mission statement 
  project constraints 
  basic requirements 
time-boxed release plan

Requirements gathering 
   JAD 
   mini-specs

components implemented/tested 
   focus groups for feedback 
   formal technical reviews 
postmortems

software increment
adjustments for subsequent cycles

Release



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 20!

Dynamic Systems Development Method!
n  It is an agile software development approach that provides a 

framework for building and maintaining systems which meet tight time 
constraints through the use of incremental prototyping in a controlled 
project environment. !

n  Promoted by the DSDM Consortium (www.dsdm.org)!
n  DSDM—distinguishing features!

n  Similar in most respects to XP and/or ASD!
n  Nine guiding principles!

•  Active user involvement is imperative. !
•  DSDM teams must be empowered to make decisions.!
•  The focus is on frequent delivery of products. !
•  Fitness for business purpose is the essential criterion for acceptance of deliverables.!
•  Iterative and incremental development is necessary to converge on an accurate business solution.!
•  All changes during development are reversible.!
•  Requirements are baselined at a high level!
•  Testing is integrated throughout the life-cycle.!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 21!

Dynamic Systems Development Method!

DSDM Life Cycle (with permission of the DSDM consortium) 



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 22!

Scrum!
n  A software development method Originally proposed by Schwaber 

and Beedle (an activity occurs during a rugby match) in early 1990.!
n  Scrum—distinguishing features!

n  Development work is partitioned into “packets”!
n  Testing and documentation are on-going as the product is constructed!
n  Work units occurs in “sprints” and is derived from a “backlog” of existing 

changing prioritized requirements!
n  Changes are not introduced in sprints (short term but stable) but in 

backlog.!
n  Meetings are very short (15 minutes daily) and sometimes conducted 

without chairs ( what did you do since last meeting? What obstacles are 
you encountering? What do you plan to accomplish by next meeting?)!

n  “demos” are delivered to the customer with the time-box allocated. May 
not contain all functionalities. So customers can evaluate and give 
feedbacks. !



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 23!

Scrum!
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 
appears, you may have to delete the image and then insert it again.



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 24!

Crystal!
n  Proposed by Cockburn and Highsmith!
n  Crystal—distinguishing features!

n  Actually a family of process models that allow 
“maneuverability” based on problem characteristics!

n  Face-to-face communication is emphasized!
n  Suggests the use of “reflection workshops” to 

review the work habits of the team!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 25!

Feature Driven Development!
n  Originally proposed by Peter Coad et al as a object-oriented 

software engineering process model.!
n  FDD—distinguishing features!

n   Emphasis is on defining “features” which can be organized 
hierarchically. !

•   a feature “is a client-valued function that can be implemented in two weeks 
or less.”!

n  Uses a feature template!
•  <action> the <result> <by | for | of | to> a(n) <object>!
•  E.g. Add the product to shopping cart. !
•  Display the technical-specifications of the product. !
•  Store the shipping-information for the customer. !

n  A features list is created and “plan by feature” is conducted!
n  Design and construction merge in FDD!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 26!

Feature Driven Development!

Reprinted with permission of Peter Coad!



These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/
e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. ! 27!

Agile Modeling!
n  Originally proposed by Scott Ambler!
n  Suggests a set of agile modeling principles!

n  Model with a purpose!
n  Use multiple models!
n  Travel light!
n  Content is more important than representation!
n  Know the models and the tools you use to create them!
n  Adapt locally!


