
1!

Lecture 16: Chapter 24!
n  Project Management Concepts!

Slide Set to accompany 
Software Engineering: A Practitioner’s Approach, 7/e "
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

2!

The Four P’s!
n  People — the most important element of a

successful project!
n  Product — the software to be built!
n  Process — the set of framework activities and

software engineering tasks to get the job done!
n  Project — all work required to make the

product a reality!

3!

Stakeholders!
n  Senior managers who define the business issues that

often have significant influence on the project.!
n  Project (technical) managers who must plan, motivate,

organize, and control the practitioners who do software
work.!

n  Practitioners who deliver the technical skills that are
necessary to engineer a product or application.!

n  Customers who specify the requirements for the software
to be engineered and other stakeholders who have a
peripheral interest in the outcome.!

n  End-users who interact with the software once it is
released for production use.!

4!

Software Teams!
How to lead?!

How to organize?!

How to motivate?!

How to collaborate?!

How to create good ideas?!

5!

Team Leader!
n  The MOI Model!

n  Motivation. The ability to encourage (by “push or
pull”) technical people to produce to their best ability.!

n  Organization. The ability to mold existing processes
(or invent new ones) that will enable the initial
concept to be translated into a final product.!

n  Ideas or innovation. The ability to encourage
people to create and feel creative even when they
must work within bounds established for a particular
software product or application.!

6!

Software Teams!

n  the difficulty of the problem to be solved!
n  the size of the resultant program(s) in lines of code or

function points!
n  the time that the team will stay together (team lifetime)!
n  the degree to which the problem can be modularized!
n  the required quality and reliability of the system to be

built!
n  the rigidity of the delivery date!
n  the degree of sociability (communication) required for

the project!

The following factors must be considered when
selecting a software project team structure ...!

7!

n  closed paradigm—structures a team along a traditional
hierarchy of authority!

n  random paradigm—structures a team loosely and depends
on individual initiative of the team members !

n  open paradigm—attempts to structure a team in a manner
that achieves some of the controls associated with the
closed paradigm but also much of the innovation that
occurs when using the random paradigm!

n  synchronous paradigm—relies on the natural
compartmentalization of a problem and organizes team
members to work on pieces of the problem with little active
communication among themselves!

Organizational Paradigms!

suggested by Constantine [Con93]"

8!

 Avoid Team “Toxicity”!
n  A frenzied work atmosphere in which team members

waste energy and lose focus on the objectives of the work
to be performed.!

n  High frustration caused by personal, business, or
technological factors that cause friction among team
members.!

n  “Fragmented or poorly coordinated procedures” or a
poorly defined or improperly chosen process model that
becomes a roadblock to accomplishment.!

n  Unclear definition of roles resulting in a lack of
accountability and resultant finger-pointing.!

n  “Continuous and repeated exposure to failure” that leads
to a loss of confidence and a lowering of morale.!

9!

Agile Teams!
n  Team members must have trust in one another. !
n  The distribution of skills must be appropriate to the

problem. !
n  Mavericks may have to be excluded from the team, if

team cohesiveness is to be maintained.!
n  Team is “self-organizing”!

n  An adaptive team structure!
n  Uses elements of Constantine’s random, open, and

synchronous paradigms!
n  Significant autonomy!

10!

Team Coordination & Communication!
n  Formal, impersonal approaches include software engineering

documents and work products (including source code), technical
memos, project milestones, schedules, and project control tools
(Chapter 23), change requests and related documentation, error
tracking reports, and repository data (see Chapter 26). !

n  Formal, interpersonal procedures focus on quality assurance activities
(Chapter 25) applied to software engineering work products. These
include status review meetings and design and code inspections.!

n  Informal, interpersonal procedures include group meetings for
information dissemination and problem solving and “collocation of
requirements and development staff.” !

n  Electronic communication encompasses electronic mail, electronic
bulletin boards, and by extension, video-based conferencing systems.!

n  Interpersonal networking includes informal discussions with team
members and those outside the project who may have experience or
insight that can assist team members.!

11!

The Product Scope!
n  Scope!

•  Context. How does the software to be built fit into a
larger system, product, or business context and what
constraints are imposed as a result of the context?!

•  Information objectives. What customer-visible data
objects (Chapter 8) are produced as output from the
software? What data objects are required for input?!

•  Function and performance. What function does the
software perform to transform input data into output?
Are any special performance characteristics to be
addressed?!

n  Software project scope must be unambiguous
and understandable at the management and
technical levels.!

12!

Problem Decomposition!
n  Sometimes called partitioning or problem

elaboration"
n  Once scope is defined …!

n  It is decomposed into constituent functions!
n  It is decomposed into user-visible data objects!
or!
n  It is decomposed into a set of problem classes!

n  Decomposition process continues until all
functions or problem classes have been
defined!

13!

The Process!
n  Once a process framework has been

established!
n  Consider project characteristics!
n  Determine the degree of rigor required!
n  Define a task set for each software engineering

activity!
•  Task set =!

•  Software engineering tasks!
•  Work products!
•  Quality assurance points!
•  Milestones!

14!

Melding the Problem and the Process!

15!

The Project!
n  Projects get into trouble when …"

n  Software people don’t understand their customer’s needs.!
n  The product scope is poorly defined.!
n  Changes are managed poorly.!
n  The chosen technology changes.!
n  Business needs change [or are ill-defined]. !
n  Deadlines are unrealistic.!
n  Users are resistant.!
n  Sponsorship is lost [or was never properly obtained].!
n  The project team lacks people with appropriate skills.!
n  Managers [and practitioners] avoid best practices and

lessons learned.!

16!

Common-Sense Approach to Projects!
n  Start on the right foot. This is accomplished by working hard

(very hard) to understand the problem that is to be solved and
then setting realistic objectives and expectations. !

n  Maintain momentum. The project manager must provide
incentives to keep turnover of personnel to an absolute
minimum, the team should emphasize quality in every task it
performs, and senior management should do everything
possible to stay out of the team’s way.!

n  Track progress. For a software project, progress is tracked as
work products (e.g., models, source code, sets of test cases)
are produced and approved (using formal technical reviews) as
part of a quality assurance activity. !

n  Make smart decisions. In essence, the decisions of the
project manager and the software team should be to “keep it
simple.” !

n  Conduct a postmortem analysis. Establish a consistent
mechanism for extracting lessons learned for each project. !

17!

To Get to the Essence of a Project!
n  Why is the system being developed?!
n  What will be done? !
n  When will it be accomplished?!
n  Who is responsible?!
n  Where are they organizationally located?!
n  How will the job be done technically and

managerially?!
n  How much of each resource (e.g., people,

software, tools, database) will be needed?!
Barry Boehm [Boe96]!

18!

Critical Practices!
n  Formal risk management!
n  Empirical cost and schedule estimation!
n  Metrics-based project management!
n  Earned value (of tasks) tracking!
n  Defect tracking against quality targets!
n  People aware project management!

