Scanned by CamScanner

What types
® of risks are
you likely to
encounter as
software is
built?
. L\t \
o i
Yy A
Y 2
~ N -
¢ "\(\ 7 &
\ Wy)
\ ‘\("'

\‘n.
©

o

-

“Projects with no
real risks are
losers. They are
almost always
devoid of benefi,
that's why they
weren'tdone

PARY FOUR
\ ality, unwanted .
I'”\i‘“"‘ fnu\l]h It { "‘”"‘llh‘”‘“

i\“\]\“l\[(- ”-.,k‘\ \H\\I"t '___
Tosses will occur [Higos). When wefe-are anatyzed, WS IMPOrtant to quang, th
levél of uncertainty and the degree of [OsS assol lated with each risk. To ac, Mplig)”
"‘h,.\ \h”(’“".” l"((\}:(\[|(‘\ Ol llul\«‘ are « 1‘”'-“'("1‘(|
projectrisks threaten the project plan rhat is, If project risks become req),
1o that the hedule will slip and that | osts will increase. Projecy ‘...

likely that the project st
“identify Pt‘l(‘l]l‘l.ll budgetary
source stakeholder, and requiremen
“ect. In Chapter 26, project complexity, sizt
\ as projcCl (and estimation) risk factors
{ timeliness of the software to be prody, i

\(h(.‘“”(“]Y(‘l‘\(‘””('l lnl.l”'ll‘.: and |||§>“|”[',|”|' n
. . LI
ts problems and their impact on a software ,

- []Y‘ :

. » degree ol sl ‘al :
A‘”d “](" 24 HI(‘“”J' I“‘l\‘”,”“f._

were also defined

rechnical risks threaten the quality anc
RS

If a ICL‘l1rlic:ifﬁsk becomes a 1'55|ity, implcnwnlalion may become difficult or IMpos
sible. Technical risks identify potential design, implementation, interface, verific,.
-fibﬁ, gnd maintenance problems: In addition, speciﬁCJ“On ambiguity, technicg
uncertainty, technical obsolescence, and “leading-edge” technology are also rigk
factors. Technical risks occur because the problem E_h_ar@qr to solve than yqy
thought it would be.

‘Business risks threaten the viability of the software to be built and often jeopard.

ize the project or the product. candidates for the top five business risks are (1) build-
“ho an excellent produc vstem that no one really wants (market risk), (2) buildi
ing an excellent product or sy_sgg 1tha | y. 1S M_)) building
a product that no longer- fits into the overall business strategy for the company
g a product that the sales force doesn't understand how to

(strategic risk), (3) buildin

sell (sales riskz, (4) losing the suEertqf senior management due (o a change in focus

or a change in people (management risk), and (5) losing budgetary or personnel
- — -

commitment (budget risks).
It is extremely important to note that simple risk categorization won't always

work. Some risks are simply unpredictable in advance.
Another general categorization of risks has been proposed by Charette

[Cha89]. Known risks are those that can be uncovered after careful evaluation of
chnical environment in which the project is

the project plan, the business and te
being developed, and other reliable information sources (€.g., unrealistic delivery
, ocumented requirements or software scope, poor development

environment). Predictable risks are extrapolated from past project experience
(e.g., staff turnover, poor communication with the customer, dilution of staff effort

as ongoing maintenance requests are serviced). Un redictable risks are the joker
in the deck. They can and do occur, but they are extremely difficult to identify In

advance.

1 Arisk that is 100 percent probable is a constraint on the software project.
Scanned by CamScanner

CHAPTER 28 11 et ;

L Y A 747

A ;Fl‘lr\Js

/——- s St Ty, & » 7
‘ Seven Principles of Risk Manaqem |
P ¢ ent
The Sofwore f"g""!"erv"\g Inshin e (SE1) é

www.sei.cmu.edu) dentifies sove 'm a consideration of risk must be integroted i

L, ot ‘prowvde o ‘V‘nw 0 o A s}‘ o the b e process {

o ' A Thes compl E o ess the team |

Live Tisk ManOgeme: y are mpha continuous proc :

- global perspecti must be vigilant throughout the software process, !
u-"""‘" - i - softwaore risks "‘°‘“Yi"9 identified risks as more information 13
wihin the coniex O Q system in which i s o known and adding new ones as better insight is

cmprert o h busioes robe e oo, |
pSRE.. - Develop a shared product vision— ol "
ke © forward-looking view—hink about the rigks stakeholders share the same vision of the software, it is |

ot may orise in the future €., dve to changes in the likely that better risk identification and assessment will ‘
whwore) estoblish confingency plans so that future occur.

events OT€ manageable Encoumg. teamwork—the talents, skills, and l

jueouroge OPER COMMUNICEHON—f someone sue. knowledge of all stakeholders should be pooled

o potential risk. don't discount it If o risk is proposed when risk management activities are conducted.
o informal manner, consider it. Encou

dmor'dmtowggwﬁsksmmyﬁm_ j
e

[28 ; ai—sx Ir PNyl

‘,‘;lfi Risk identification js a matic attempt to specify threats to the project plan (esti-
‘ -

“kl)7+ mates, schedule, resource loading, etc). By identifying known and predictable risks,

3;}*’ the project manager takes a first step toward avoiding them when possible and con-

trolling them when NECEeS3ary. S

u There are two distinct types of risks for each of the categories that have been pre-
‘ sented in Section 28.2: generic risks and roduct-specific risks. Generic ri a

Paggensls potential threat to every software project. =Specific risks can be identified only
. by those with a clear understanding of the technology, the people, and the environ-

::::& ment that is specific to the software that is o be Built. To identify product-specific

Wasfens Tisks, the project plan and the soﬁware statement of scope are examined, and an

Mt oo answer to the following 0 : ' ics of this

product may threaten our project plan?”

5 oy One method for identifying risks is to create a fiskitem checklist Fhe checklist

and focuses on some subset of known and pre-

g bas i 5
* Product size—risks associated with the overall size of the software (o be built
“w‘_, “‘!70‘ .. =als ’v TN LY ‘:\‘ G At % ‘
Business impact—risks associated with constraints imposed by managemen; |
i y ’ 4 4%, 0 _;'} il »‘(Lr"d: b “t :
. "

Scanned by CamScanner

748 PART FOUR MANAGING

soiated with the sophistication of the

risks ass

L] 4'{,(1’\(‘.’)‘ ”: i(F & ,Vc”!i‘l l¢ 1 [
ability to communicate with stakel
£)lll,\r)‘ n

stakeholders and the developer's

aTimely manner
risks associated with the degree (o which the software

e Process definition
w the development organiy sticn
y ‘ I

'brnu“-.ﬂ has been defined and is followed |
e Development environment risks associated with the availability and quality
of the tools to be used to build the product
Technology to be built-—risks associated with the complexity of the system 1o
be built and the "newness” of the technology that is packaged by the system
_risks associated with the overall technical and

Staff size and experience-
‘L‘—--
engineers who will do the work.

project experience of the software

The risk item checklist can be organized in different ways. Questions relevant to

each of the topics can be answered for each software project. The answers to the:;e
O S ———— ¥ s . . . ")

guestions allow you to estimate the impact of risk. A different risk item checklist for-

mat simply lists characteristics that are relevant to each generic subcategory. Finally
a set of “risk components and drivers” [AFC88] are listed along with their probability

of occurrence. Drivers for performance, support, cost, and schedule are discussed in

answer to later questions.
A number of comprehensive checklists for software project risk are available

on the Web (e.g., [Baa07], [NASO7], [Wor04]). You can use these checklists to gain
insight into generic risks for software projects.

28.3.1 Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying
experienced software project managers in different parts of the world [Kei98]. The
ns are ordered by their relative importance to the success of a project.

questio
Is the 1. Have top software and customer managers formally committed to support
software the project? |
roject we're 2. Are end users enthusiastically committed to the project and the system/ |
i e 74 oduct to be built?
isk? product to be built?
3. Are requirements fully understood by the software engineering team and its
customers? sl
4. Have customers been involved fully in the definition of requirements?
5. Do end users have realistic expectations?
right mix of skills?

Scanned by CamScanner

\\\\\‘
PR

A R W

N

=

——

- . MAN A
ANA SR 749

10. s the nummm-
. Onu'eP‘UKﬂleamadequatclodulhc;ob?

and on the Wl:et::nwm agree on the importance of the project
s for the system/product to be built?

If any one of thes LA

agement steps should 'S answered negatively, mitigation, monitoring, and man-

risk is directly ,bei'&iltw without fail. The degree to which the project is at
10 the number of negative responses to these questions.

28.3.2 Risk Compe iy

The US. Air Force AFC38 L
lines for software ‘[.].hasmapamphktlhal contains excellent guide-
: nskldn_:nuﬁcationandabatanem. The Air Force approach requires
ify the risk drivers that affect software risk components—
periormance, cost, Support. and schedule. In the context of this discussion, the risk
components are defined in the followi :
: U_ﬂt degres of uncertainty that the product will meet its
requirements and be fit for its intended use.
.M, : the degree of uncentainty that the project budget will be
maintained.
* Support risk—the degree of uncertainty that the resultant software will be
» Schedule risk—the degree of uncertainty that the project schedule will be
The impact of each risk driver on Mﬂﬁkmﬂlﬂlt is divided into one of four
impact categories—negligible, marginal, critical, or catastrophic_Referring to Fig-
ure 28.1 [Boe89), a characterization of the potential consequences of errors (rows
labeled 1) or a failure to achieve a desired outcome (rows labeled 2) are described.
The impact category is chosen based on the characterization that best fits the
descaye e MR L, T

S SR A

TWCEHIIDIC
5 Al

Scanned by CamScanner

Impact
assessment!

Think hord about the

« softwore you're about
to build and ask
yoursef, “what can go
wiong?” (reate your
own st ond osk other
members of the feom
to do the same.

; Components ‘
'
Performonce Support Cos | Schedule
‘
Category |
Foilure to meet the requirement . re ecned oo
2 ~ Pk o marryy & o
would result in mission foilure s g it PO
.
i Signihicont Nonresponsive of greCe OrCC T
atastrophic >g : - e 0
. degradotion lo unsupporiabie i es ge)
nonachievement software overrun ne
ol technicol
performance
Foilure to meet the requirement would Failure resuls = operofional deloy
degrade system performance 10 g poin! | onc/or iacrecses :é T W sxracies
where mission success is guesfionable volue of $100K to $S500K
Critical - = -
Some reduction Minor delays in Some shorioge © Prasioe
in technical software "«:ﬂ; ol resowrce scpoge
performance modificafions ossible overrun =~ 10C
C impocs ord o reco
Failure to meet the requirement woulc XM pocs, Cmey/ o NEC—
result in degradation of secondary schedule slips with expecied volue
mission of $1K o $100K
Marginal Minimal o small Responsive Sufficient Enancic Reclisic
reduction in software resources s e
technical support ikl
performance
Failure fo meet the requirement would Error results in minor cost ong/or
create inconvenience or nonoperctional scheaue IMPOCt wilh Bxpecied vole
impact of less than $1K
Negligible 5)
.- No reduction in Easily supporioble | Possible budget
technical software underrun
performance

Note: (1) The potential consequence of undetected software erors or fauls.
(2) The potential consequence if the desired outcome is not achieved.

The intent of these steps is to consider risks in a manner that leads to priontization
No software team has the resources to address every possible risk with the same
degree of rigor. By prioritizing risks, you can allocate resources where they will have
the most impact.

28.4.1 Developing a Risk Table

A risk table provides you with asimple technique for risk projection.” A sample nsk

table is illustrated in Figure 28.2.

You begin by listing all risks (no matter how remote) in the first column of the
table. This can be accomplished with the help of the risk item checklists referenced
in Section 28.3. Each risk is categorized in the second columm @8, PS implies a

2 The risk table can be implemented as a spreadsheet model. This enables easy manipulation and

sorting of the entries.

i

Scanned by CamScanner

wﬂpll‘ HSR
;ﬂblp ')HOI to
wﬂlng

(A

LY
POINT
Ak bl i sorted by
ond impact

Risks T Py g £ e
r\-__'_;
;“"‘ estimate may be o o _c:“".'y Probabilivy Impact RMMM
1(."”” Number of Urer ??\on“}mly lw P T ,
|'U] reuse thap planned Planned P »m.; /’
ne Users resis : &
Delivery dgnc';l" System Ps 0%, 7
oret Padline wil| e lightenec g 40% I
-un. NG will be |og b BU 50% 2
.euc.*xhcr)‘r:i:r will Thongo fequirements & 20 I
Lack of | Uit |01 ool expeclations - 15 .
Staff i faining on tools s 0% I
all inexperience DE B0% 3
Staff turnover will be high o 30% 2
3 ST 60% 7
pe
by

Impact valyes:
]—cotostmphic
2—critical
3-—morginq|
4—negligible

project size risk, BU implies a business risk). The probability of occurrence of each

risk is entered in- S of the table. The probability value for each risk can
be estimated by team members individuatty. One way to accomplish this is to poll

individual team members in round-robin fashion until their collective assessment of
risk promﬂryb'egl‘n’s*to‘cc&n'\,'erge.

Next, the impact of each risk is assessed. Each risk comng using
the characterization presented in Figure 28.1, and an impact category is determined.
The categories for each of the four risk components—w,
and schedule—are averaged® to determine an overall impact value.

\ance the first four columns of the risk table have been completed, the table is
sorted by probability and by impact. High-probability, high-impact ri§E§ percoléte to
the top of the table, and low-probability risks drop t? the bottom. This accomplishes

i joritization.
ﬂrst;)order B pnf:eu::sultant sorted table and define a cutoff line. The cutoff line
(drawn horizontally at some point in the table) implies that only risks that lie above

line will be given further attention. Risks that fallbelow the line are reevaluated
the e . § ler prioritization. Referring to Figure 28.3, risk impact and
to accomplis

_ 2 used if one risk cumpc;nant has more significance for a project.
3 A weighted average can be used if

g i TS
A o E

el U e y

Scand by CamScanner

i

782 PARY FOUR MANA

e T ——

oo 203

Risk and
managemaen!
concern

Very high

Disregard
risk foctor

Management

concern

probability have a distinct influence on management concern. A risk factor that has

a high impact but a very low probability of occurrence should not absorb a signifi-
cant amount of management time. However, high-impact risks \gth moderate to

high probability and |
into the risk analysis steps that
All risks that lie above the cutoff line should be managed. The column labeled

RMMM contains a pointer into a risk mitigation, monitQring, and management plan or,

Qmim&ﬂ;i;liwiﬂ; high probability should be carri
OW-

pmd aq\mimvepmmmcymmm

alternatively, a collection of risk information sheets developed for all risks that lie
above the cutoff. The RMMM plan and risk information sheets are discussed in
Smthm 28.5and 28.6.

_ , individual Mm
| de:emmm tisk probability have been develaped |

e =

Scanned by CamScanner

SianN M/'\N/\FSIZMI NT ‘

753
(@ technica) risk)
tem imu:r

1ty (

| will Preclude
| ation Problemg |
Just how SCrious is i ’)

= ¥ gy
i arly de sign and testing and will likely lead to sys
ale In ; e ' | adei
\N'“ . 1 Pr“l((l Ih(‘ (Q(.(,P{,‘ ()f a 'i(‘L’ ((Imhi“i\c" !h(' ()(\/(r
118 oyer istri i jec 4
P Slakvh”l l‘ .&‘!”‘(],5“”,““”,1 (how much of the Prulf,(_.t wi
and for ha ders are harmed?) Finally, the timing of a risk cort
) <101 how lnng the im , |
$" 1O oceyr . -

Cur as S00N
the better

be affected or how m
siders when
‘bad new Pact will be felt. In most cases, you want the
as possible, but in some cases, the longer the delay

Rcun‘ning once

 do we Mmore d
7 H:s:q the |AFC88], you can 4 |rL. 10 the tisk analyss approach proposed by the U.S. Air Force
:se‘;lwﬁces arisk: (1) dﬁlcl.mmipti: L following steps to determine the overall consequences of
0 ~lNE the g . . |
;loris‘(? ponent; (2) us d\erage Probability of occurrence value for each risk com

ing Fj -
8 Figure 28 1, determine the impact for each component based on

the criteria show
scribed i N and (3) complete the risk table and analyze the results as de-
scribed in the Preceding sections

The ove ' : |
[Halog]: raanSk Xposure RE is_determined using the following relationship

RE = P x C L =P i

For example, assume that the software team defines a project risk in the follow-
ing manner:

Risk identification. Only 70 percent of the software components scheduled
for reuse will, in fact, be integrated into the application. The remaining
functionality will have to be custom developed.

Risk probability. 80 percent (likely).

Risk impact. Sixty reusable software components were planned. If only
70 percent can be used, 18 components would have to be developed
from scratch (in addition to other custom software that has been
scheduled for development). Since the average component is 100 LOC
and local data indicate that the software engineering cost for each LOC
is $14.00, the overall cost (impact) to develop the components would be

18 x 100 x 14 = $25,200. ‘
Risk exposure. RE = 0.80 x 25,200 ~ $20,200.

: ' isk in the risk table, once an estimate of
isk e can be computed for each risk in ’
m ”:E for all t;lmSk e:f—-g—?urmz risk is made. The total risk exposure for all risks (above the cutoff in
cost € COo. .

i o the risk table) can provide a mea adjusting the final cost estimate for a project.
5 g e ris p : ns for adjusting stimate
oy : ‘

increase in staff resources required at
schedule.

" E sis techniques described in Sections 28.4.1 and

2ds. The project team

Scanned by CaScanner

—
754 PARY FOUR MANAGH v ARE P ‘ i

reevaluating each risk 16 go

“"mn.

be necessary to add new risks 1o the table, 1,

als
should revisit the risk table at re gular interv

when new circumstances cause its prob ability and impact 1o change A g

quence of THIS activity, il may

some risks that are no longer relevant, and change the relative position, of ‘.;
others
3
| risk will occur. Then, Wmmg,“
B - o g, scale of 1 (minor) 1o 5 (cotastrophic). o
: The scene: Doug Miller’s office prior \ﬁlll‘!so"MMthamm -
o o it of be SokHone lvore prof 0 i o 1k 115 g

_ﬂmmw;zwmdm,m e “ :
::::-:u [F"‘M""F‘“:"mﬂm f
The conversation: Doug: Ckay, stop. Now we/ll moke o group list on

wlibboad.ﬂdo‘nmwg‘l ol
Doug: I'd like 1o spend some fime brainstorming risks for ¢

Scanned by CamScanner

Using the ¢

Lulve 3
' that an reusal
sah
h,[l_il \\‘l”l'

YA s ¢
Planned reusal Steonform

b 1a eCilic de]
IS Conee l : %
1€em thay (po

| sibl nly 70 |
Y be INtegrated |

INto the 4

N built Lery
dain) ‘
lng O Percent ¢

This geney

Al condition f components

Subcondition .

ertain reye
Know](‘d\‘: n reus

¢ of nternal design
Subcondition 2. The desj
gn

able oy
Nponents
LS Were a . i
standards €re developed by a third party with no

Standarq f,
Or co :
Mponent Interfaces has not been solidified

al \1 T \, L
g

The consequences associate

: d wi
i.e., 30 percent of ok th these refined subconditions remain the same

ec

» Omponents must be custom engineered), but the
eu ing ri : . ;

response. nderlying risks and might lead to easier analysis and

~_28.6 RISK hdIIIGBIIQH Mc ,

\luoie:

l1oke s0 many
wanuions, it is
wanse | leave
whing fo chance.”

‘mm
we do to

Yite k2

All of the risk analysis activities presented to this point have a single goal—to assist

the project team in developing a strategy for dealing with risk. An effective strategy
must consider three issues: risk avoidance, risk monitoring, and risk management

S—

and contingency planning. v

If assaftware team adopts a proactive approach to risk, avoidance is always the
best strategy. This is achieved by developing a plan for risk mitigation. For example,
assume that high staff turnover is noted as a project risk r,. Based on past history and

management intuition, the likelihood /; of high turnover is estimated to be 0.70
) and the impact x; is projected as critical. That is, high

(70 percent, rather high ‘
turnover will have a critical impact on project cost and schedulfe.
To mitigate this risk, you would develop a strategy for reducing turnover. Among

the possible steps to be taken are:

Meetwith current staff to determine causes for turnover (e.g., poor working
e« Me flo determi &
conditions, low pay, Compeﬁtivc job market). B -
under your contro :
e causes that are und
ommences, assume turnove

uity when people leave.

« Mitigate thos
+ Once the project

r will occur and develop tech-

; tint e
niques to ensure con it information about each development activity

. Organize project teams
gpersed.

Scanned by CamSa

nner

Gowcsg

IF RE for a specific risk
is less than the cos! of
risk mitigation, don't
Iy to mitigate the risk
but continve fo
monitor it

TP AP

PART TOUR

! chantams teo b
ol ANagartis ¢

' '\'f‘|rw|)l'f| in b

Deline work lm-(hul e ongiircnt

maodels and doc uments are Al |
y 10 D108 "]
o all work (50 that more than One person is “ug
; *Wa ((v \
» Conduct peer revi

«pecd”) N ol
| 1 for every critical technologist

Assion a backup staff membe

'y

oring activities commence. The projecs p,
onftoring activitics cort 'he proj

: s project proceeds, risk-m _ ot "o
AS the | roject | an “]diCd“U” (}' th(‘.‘r',:r the risk 15 becor

vide

- v o - » Ya o <(-)

Ser monitors factors that may pr : P

. high staff turnover, the general attitude of ...,
(=)

ine more or less likely. In the case of el ey,
o 3 2 el o7} 5 7;“4 o 4 ol
members based on project pressures, the degree to v o o JSNEd, Inte
; > otential pronicr -
personal relationships among team members, p)' . sz e e -
. - . , 2 Y anad gutside it -»e
tion and benefits, and the availability of jobs within the pany e it

-

o it
5 With compen--
Vo

e

all monitored. | B
In addition to monitoring these factors, a project manager should monitor

effectiveness of risk mitigation steps. For example, a risk mltlgat‘lon step noted her:
called for the definition of work product standards and mechamsr'ns t? be sure that
work products are developed in a timely manner. This is 9ne mecnamsm for ensur-
ing contjr(::ity, should a critical individual leave the project. The project manzager
should monitor work products carefully to ensure that each can stand onits cwn zng
that each imparts information that would be necessary if a newcomer were forced
to join the software team somewhere in the middle of the project.

Risk management and contingéncy mnning assumes that mitigation ¢ffor’5 hay
failed and that the risk has become a reality. Continuing the eéxample, the project :
well under way and a number of people announce that they will be leaving. If the
mitigation strategy has been followed, backup is available, information is docu-
mented, and knowledge has been dispersed across the team. In addition, vou can
temporarily refocus resources (and readjust the project schedule) to those functions
that are fully staffed, enabling newcomers who must be added to the team to “get
up Lo speed.” Those individuals who are leaving are asked to stop all work and spend
their last weeks in "knowl&dgeiraw." This might include video-based
knowledge capture, the development of “commentary documents or \Wikis,” andor
meeting with other team members who will remain on the project.

Itis important to note that risk mitigation, monitoring, and management (RMAIAD
steps incur additional project cost. For example, spending the time to back up every
critical technologist costs money. Part of risk management, therefore, is to evaluate
when the benelits accrued by the RMMM steps are outweighed by the costs assocl-
ated withrimplementing them. In essence, you perform a classic cost-benefit analy-
sis. If 115K aversion steps for high turnover will increase both project cost and
duration by an estimated 15 percent, but the predominant cost factor is “backup.”
management may decide not to implement this step. On the other hand, if the risk
aversion sleps are projected to increase costs by 5 percent and duration by only
3 percent, management will likely put all into place. '

(2

o

n

e

Scanned by CamScanner

v B L)
o2 * R
¢ I i ‘;‘,"
' ot e

CHA)
1'|ER 28 l\l'\l\ P\1ANI\“FP1} [
LIV ‘N
5

For a large pro
. 8 Project, 30 or 4¢ i

are identifieq fosiabc(lilqcmiﬁcd. If between three and scve-n
E.;\Pgrjcncc indicales ll?;?g' you should adapl, :}:ikl?a]?::?)g;(;]jzcg l n;a): bcc;rx(;fcr;ir::
potential for project faijur 0 percent ofthe overall project ri .ru S '
risks. The wo 'k] .allmc) can be accounted project risk (i.e., 80 percent of the
mife which 'k performed duﬁ%wﬂﬂ?ﬂW&O percent of the identified
. of the risks reside in th er risk analysis steps will help you to deter-
tisit exposure). For this reason ' that 20 percent (e.g., risks that lead to the highest
) ”‘]_?Ly"ﬂot make it into the RMM;J\Asome of the risks identified, assessed, and projected
risks with highest project Pri;rityl))lan_they don't fall into the critical 20 percent (the
Risk is not limited ’

has been successfu“; C()i:/ee]?)onware proj.ect itself. Risks can occur after the software
ically associated with the ¢ ped and delivered to the customer. These risks are typ-

Software safety and ha onsequences of software failure in the field.
quality assurance aCti\J'itiz;,u(f:;ﬁ:CUySIs (e.g., [Dun02], [Her00], [Lev95]) are software
ment of potential hazards that niter o) igrioein (22 ?dentiﬁcation and assess—
system to fail. If hazards can be .day E-lffeFt SOﬂv'vare negatively and cause an entire
< Evirate HEstam I ent}ﬁed early in the software engineering process.
gn features can be specified that will either eliminate or control poten-

tial hazards.

ectinitsell For thig re

28.7 THE RMMM PLAN
ncluded in the software project plan, or the risk

A risk management strategy can bei
management steps can be organized into a separate 11k mitigation, monitoring, and

management plan (RMMM). The RMMM plan documents all work performed as part
of ris part of the overall project

k analysis and is used by the project manager as
plan.) LSS i T
some software teams do not develop a formal RMMM document. Rather, each
Q_G) risk is documented individually using a risk information sheet (RIS) [Wil97]. In most
| cmﬂrﬁﬁ‘nﬁéined using a database system sO that creation and informa-

tion entry, priority ordering, s€arc ysis may be accomplished eas-
f the RIS is illustraté

hes, and other anal

d in Figure 28.4.
has begun, risk mitigation and

ily. The format O .
Once RMMM has been do_c_um@nt.ed and.the project ' isk milig:
o sleps ce. As | have already discussed, risk mitigation is @ prob-

racking activity with three pri-

monitoring st€p> comme :
a project tra

Jance activity. Risk monitoring is '
e AT ’ icted risks do, In fact, occur;)@;o ensure

——— e vheth

fves: (1) toassess ¥ » —— =

el ~ defined for the 1ok are being properly applied; and (3) 1o col-
any cases, the prob-

-—

.ok aversion st€p ol 5 2 e
that E&_(ilan_,tﬁaatﬂea ——ced for future rlsl(_arlal)fils. Inm
Ject informa dﬁﬁhgda’ﬁfag . e traced to more fhan one risk. Another job of
Jems that oc.CUgr 1o itempt 10 allocate origin [what risk(S) caused which problems
risk monitorin

throughout the project]-

Scanned by CamScanner

Risk information sheet
- . 7 3 =12 £ /209 :':‘: 20% ‘ mpoct b
| , L] e & el - {
1\ Do}{f'_r'rcn e ooty schachiied for reuse
- e et —fm The remoiming Runchonolity will b
ecrTEe i e cooieThi e :
| d ’_‘
o
|
| Refinement/contexh ‘ |
| i 2n'y were geveiopad Dy
ubroraiter =7 _
. Y =0 RO 2o oF 3N STEmMOOTas.
! et - 42 for component interfoces h
S LI - L ;
B e = ~oime— %2 cerion existing reuscble component

Praes o irreriocs :“"ZC’:: CoEP

-
z

cecidirg on infertacs orofoccr.
T

. - — o e

Theck o materm e m—mer oF smmooments in tubcondition 3 cotegory; chack
, ” S E——

fo cetermine it longuoge support con be ocguired.

7'5 comguted o be SZ'_ f_:'.. Alccots Sis omount within project confingency cost
Deveicg revised schedule cssuming that 18 addifional components will have 1o be

Current staotus:

T~ rr - . s
5/12/09: Mitigeticn stegs inifice
P

8.

O
N
(W

)

SoCne
b~

Risk Management
Q Chjective: The coijective of risk mancgement
tools is to cssist o project teom in defining risks,
assessing their impoct and probakility, cnd tracking risks
throughoist o sehware project,

Mechanics: In general, risk renagerent ool casi

- 4l l'
generic risk identification by providieg o lis of r/p'cr,{
project ond tusiness risks, provide checklists or ofher

“interview/ techriques that assist in idertit fing project

specific risks, assign prokebi] ity and impact to ench risk,
support fisk mitigetion strotedies

s, and generate marry
different risk-related regorts,

4 Tools noted nere 4

SOETWARE TOOLS

Representative Tools:*

@risk, developed by Polivade Corporation (www
-palisade.com), iz o generic risk analysis tool that
vz Mente Carlo simulotion to drive its analyfical engine.

Riskman, distributed by ABS Consulfing
(wvrw.absconsulting.com/riskmansoftware/
index.html), is a risk evaluation expert system that
identifies project-related risks.

Fisk Poder, deeloged by SPMN (www.spmn.com),
assists project managers in identifying ond manoging
project risks.

)
do nat represent an endorsement, but rather a sampling of tools in this catego”

In most cases, tood names are trader

arked by their respective developers.

Scanned by CamScanner

Qo r T W ARE (S ON SIS A BT C
Y¥ &5 2% i J K -~ 1] . hy 1y A 3 E T
AR Dbt N LA U RATIO AAANAG ;;::...‘L O .

& vote:

Tensnothing
e excepl

Fw--:"r,s

Sy,

14

9 What is the
r!: ¥igin of
“SRges that ol
Mnted for
Wi

items that comprse all information produced as pz-.rt of the software process ar

The output of the software process is information that mav be di';?:dr:-d in:o th

)
3
.

(a7
i
fb
o
ey
Y}
L=
ru‘
)
,_,
..J
i

broad categories: (1) computer program= (both source level
E o | (e Y -

(2) work products that descnbe the computer pro
DIk/Brodusts Hhat desc I
holders), and (3) data r content (containca v

"J

collectively called a sofnvare configuration.
—‘—‘-—P— * - . - = -
As software engineenng work progresses, a hierarcny 0
items (SCls)—a named element of information that can be as small as a singlz UM
diagram ~dfagram orastargeasthecomplete design document—is created. If ealh SClsimply

led to other SCls, little confusion would re_uh Unfortunately, anath
ters the process—dung' Change may oveur at any time, for any reason. In 1act. the

-

First Law of System Engineenng [Be"ﬂ] ‘states: “No matter where vou are in the sys-

\-——-———'_"__—'
and the destre to change it will persist

tem hte cycle, the system- will ¢ -hange,

throuoncﬁﬁﬁg’lpﬁe cvcle.”

What is the origin of these changes? The answer to this question is as vaned as
the changes themselves. Howe\ er, there are four fundamental sources of change:

‘New business oy market wnd,ttonx dictate changes in product requirements

-

\-—__—-‘ -
or business rules.

» New stakeholder needs de

de und rodification of da prcd'.:::"d by intorma-
tion systems, functionality delivered 2

b\‘l '111.\.\1 'C:__ ‘r S..n‘.;:‘-\ t‘red [\\ i

computer-based system.
«» Reorgapization or business gro
priorities or software cngmeenng team structure.

s Budgetary or scheduling constraints cause a redefinition of the svstem or

product.

Scanned by CamScanner

ey 1T M
v LEANAGEMEN

586 PART THREE
1 ie a set of activities that haye
nanageme nt is a set : Ve besp, .
sughout the lite € le of computer software g
s - = 3 £ o e
| ance activity that is applied throughey s .
‘ Ik

T
rh

Software configuration |

oped o manage ¢ hange thrt
Lty assul

» ol . : . “a b .
ollow, | describe major SCM tasks ang i

U

viewed as a software qua

ware i\rn“«.:_.-‘ m the sex tions that
su 1o manage change

-1

concepts that can help V¢

22.1.1 An SCM Scenario’

A typical CM operational <cenario involves @ pTU.iCC[manager Who is in ¢p,

<oftware group, a configuration manager whoisin charge of the CM proceqd, iy
|19 1o are responsible for developing and my,,

Oa ~z
T_;?; 3

e ; ,
policies, the soflware engineers W
ing the soflware product, and the customer wh

ngds

assume that the product is asmall one involving a 2¢
B A s . o
veloped by a team of six people. (Note that other scenarios of smaller or larger teams

are possible, but, in essence, there are generic 1Ssues that each of these projes fac

ar

o uses the product. In the SCens
bout 15,000 lines of code pein. .

>]
Ca
.

concerning CM.)

Whot are the At the operational level, the scenario invoblgs various roles and tasks. For the
® goals of and pwr, the goal is to ensure that the product is develmﬁ‘m a Certain
'ht{“‘“‘”i’? time frame.-Hence, the manager monitors the progress of development and recee.
performed hy s ; : 9
C o1) nizes and reacts to problems. This IS done By generating and analyzing reports afo
eath ol the \ s e T e =

the status of the software system and by performing reviews on the system.

constitvendies =

involved in change The goals of the configuration manager are to ensure that procedures and=sa.
managemeni? cies for creating, changing, and testing of code are followed, as well as to make

Aformation about the project accessible. TO implement techniques for maintaining .
control over code changes, this manager introduces mechanisms {or making ofiidal -
requests for changes, for evaluating them (via a Change Control Boardthat is
responsible for approving changes to the software system), and for authorizng
changes. The manager creates and_disseminates-task lists for the engineers and
basically creates thé project context. Also, the manager collects statistics about cor-
ponents in the software system, such as information determining which components
3'—'¢ in the system are problematic. -

P‘(‘"NT For the software engineers, the goal is to work effectively. This means engineers
Thee must be o Wﬂlmrfere with each other in the creation and testing of code aré
mechanism to ensyre. 1the production of supporting work prmﬁe samg time, they try o i
thot simultaneous municate and coordinate efficiently. Specifically, engineers use tools that help buld

Et‘;’g::;:":‘i‘“‘“e a consistent software product. They'communicate and coordinate by notifying o
ent of N e : oA AcTesS
gy ke, another about tasks required and tasks completed. Changes are propagated 3‘“‘:
managed, and each other's work by merging files. Mechanisms exist (o ensure that, for COH‘PO“‘n:
executed. that undergo simultaneous changes, there is some jvay of resolving conflicts &%

RS o onally
1 _Thx::» sc-uwn is cxlr_:u:lt'd from [Dar01]. Special permission to reproduce “Spectrum o “m_'['c,q:‘.
in CM System’ lby Susan Dart [Dar01], © 2001 by Carnegie Mellon University 1s gmntcd y the =
ware Engineering Inslitute.

dl
Scanned by CamScanner

(2
LM EHT 57

merging changes. A history i kept of gy
& \ N the

’:’!n'w '(\[{ h

]

(f‘.'fllll”r]n of all companents of the -.]“‘-‘";’
i”]”ff", and ar

along with a log wirh rea

PP |
b TP i : oce K ! 2 lr‘ ¢ ,";,;I".'i',‘ﬁ
The engineers have their gy, w cord of what actually »

Otkspace -
| =HAVC IO Cre:
‘:,.a“ni)‘ (Hl,:(‘ ‘\l d cen !

hf' (l||l¢- jn
Sand from whic
5 the product, g
tomer follows formal proce
the product.
ally, a CM syste inthi . ,
h fd_e liv m__sdele usedin this scenariq should support all these roles and tasks:
that 1s, the roles determine the functi .) _ P
Ctionality re : M systeffi The proiect
manager sees CM as an auditing Ly required of a CM syster P_)
_ _ & echanism; the configuration manager sees it 25 a
controlling, tracking, ang Policy making ism; the software engineer sees it

asa Changmg: building, ang access,comroLmechamsm;'and the customer sees it as
a quality assurance mechanism,
/<\\ i)

ai - g, chanoing testing and inte

a4 poiny | ' s 1 -
' 3 [nl,'“]{. i 1o a baeer . whie r] further

development continye M0 a baseline from whick

h Variani

sfor other target m: es are made
The customer yse rother target machines

nce the

Product is under CM control, the cus-
dures for request;

ng changes and for indicating bugs In

Y
v

Per on software configuration management, Susan
Dart [Dar01] identifies foyr important elements that should exist when a configura-
tion management system is developed:

/6 Component elements—a set of tools coupled within a file management system
— ———— T oot

(e.8., a database) that enahjes access to and management of each software
configuration item.

e Process elements—a collection of actions and tasks that define an effective

approach to changﬂ_management (and related activities) for a

constituencies involved in the Management, engineering, and use of
computer software.

+ Construction elements—a set of tools that automate the construction of
software by ensuring that the Proper set of validated components (i.e_, the
\...__________.__ .
correct yersion) have been assembled.

¢ Human elements—a set of tools and process features (Encompassing other

) CMelements) used hy the software team to implement effective SCAL.

" These elements (to be discussed in more detail in later sections) are not mutually
exclusive. For example, component elements work in conjunction with construction
elements as-the software process evolves. Process elements guide many human

activities that are related to SCM and might therefore be considered human elements
as well.

2213 Baselines

Change is a fact of life in software development. Customers want to modify require-
ments, Developets want to modify the techwp_rgicl i!a'nagers \n.wal’lt [0_ mod-
ify the project strategy. Why all this modification? The answer is really quite simple.

A

Scanned by CamScanner

px o™
ABVICE g\
Mos! sofnare chonaes
0ve fisthed <o there's

o point in

comphaining chout
them. Rother, be
certain that you hove
mechanisms in plce
to handle them,

imnr L ALY IFARR]

know more (ahout what 1,

As time passes, all constitiiencles Y Neay .
proach would be best, and how to et ie done and <HI ke My, I '.‘, "Miet,
knowledge is the driving torce behind most changes and leads o, 8 '4'.11:-,' et
that is ditficult for many sollware engineering practitioners 1, Accepy ”!" fit ¢ fr,
are justified! f¢ Tieyy ™
A basclineis a software configuration management oneept fhat . ” .
ALY

trol change without seriously impeding justifiable change. The 1p, Ellppp oy ™

010.12-1990) defines a bascline as: 1y,

—A .\j\icilllLall()ll or product that has been formally reviewed and apree, g 1

after serves as the basis for ﬁulhcr development, ind that can be ¢h. anged o
) < / '-’3(’4

LO_uuaLdmuggionl:ol proc c‘duwf. “

el tFieys

Before a software conﬁgura\lion item becomes a baseline, changes, May b
quickly and informally. However, once a bascline is establis shed, Change. . §
made, but a specific, formal procedure must be applied to evaluate and ye nr-d” "
change. e
In the context of software engineering, a baselinc is 15 a milestone in the deye,
S——o ?’“

,h

M_a_ge A baseline is marked by the dellvery of one or more software CONfigyryy

items that have been approved as a consequence of a technical review (Cha Dter
_ Tk aDter 1=
For example, the elements of a design model have been documented and reyie, .
Errors are found_and corrected. Once all parts of the model have been
— l'ﬁ"‘ﬁ'r
corrected, and then approved, the de&g_model becomes a baseline. Further chan
id "f-c
to the program architecture (documented in the desxgn model) can be made only a2
each has been evaluated and approved. Although baselines can be def; ned at any e
of detail, the most common software baselines are shown in Figure 221, o

e Madified
4//'

project —_— Project datobase
database Aoy

Software p.oxed

anginesring @ Tuchmccl ST

grwks J reviews

Extracted
SCM

@,

controls
BASELINES

System Specification
Sotware Requuements
Design Specification
Source Code
Test Plans/Procedures/ Dot
Operational System

Scanned by CamScanner

cuapTER 22 201 TWARE CONTIGURATION MAMAGEMENT il

> VOTOSS " evn @ P e g-
The progression of events that lead to a baseline is also llluztrmf.d in FIg
e -

.72 1 Soflware enginecri Ad) < are 1€
;\7”9 ure 22.1 cngimecring tasks []rrj(][j(_(: one or more SCls. After SCIs ar e’
e . ‘—- e} T . B X) ”),"-‘C.
) viewed and approved, they are placed in a project databasc (also called 2 proje

) per of

Y

Jibrary Or oftware repository and discussed in L_C“mjfz; when a mem
selined SCI. 1115

goftwarc engineering team wants to make a modification to a bas
copied (rom the project database into the engineer'spHvalt workspace. However,
- L -
his

is extracted SCI can be modified only if SCM controls (discussed 1ater int

th
dification path

chapter) arc followed. The arrows in Figure 22.1 illustrate the Mo
fora baselined SCL.

y /22.1.4 Software Configuration Items

[have already defined a software configuration item g5 information tha_g_i§__created
35 part of the software engineering process. In the extreme. <1 could be consid-
efEd_to be a single section of a Iarge Mtion or one test case in a large suite of
tests. More realistically, an SClis all or part of a work product (€.8.. @ document, an
entire suite of test cases, or a named program component).
in addition to the SCls that are derived from software work products, many soft-
ware engineering organizations also place software tools under configuration con-
trol. That is, specific versions of editors, compilers, browsers, and other @.Eo@ated
tools are “frozen” as part of the software conﬁguratgr’xi Because these t00ls Were
used to produce documentation, source code, and data, they mqg/t begavailabﬁle when
changes to the software configuration are to be made. Al't-};?);ghiproblems are rare,
it is possible that a new version of-a tool (€., a compiler) might produce different
results than the origina] yersion. For this reason, tools, like the software that they
hap to produce, can be baselined as part of a comprehensive configuration man-
PRSP e

, In reality, SCIs arc or anized to form configuration objects that may be cata-
loged in the project database with a single name. A configuration object has a
onnected” to other objects by relationships Referring to

ww is“c

gure 22.2, the conﬁguratioFBBjects, DesignSpecification, DataModel,
ComponentN, sourceCode, and TestSpecification are each defined sepa-
rately. However, each of the objects is related to the others as shown by the
arrows. A curved arrow indicates a compositionql relation. That is, DataModel
and ComponentN'are part of the object DesignSpE?iﬁc’ation. A double-headed
straight arrow indicates an interrelationship. 1f a change were made to the
SourceCode object, the interrelalionsh_iﬁs-cnable you to determine what other

objects (and SCls) might be affected.?

agement process.

2 These relationships are defined within the dat
discussed in greater detail in Section 22.2.,

abase The structure of the database (repository) is

Scanned by CamScanner

’ — . s o » N—— S ._‘\"\-,._
Prwe. \ﬂ\r“—".r" > - .
6\—, | 22.2
'_|”'>,‘|-.,‘ Lt

Configuration
oblects

-
DesignSpecitication

(BB R GINTA) pe—————
nrchitectural deaign

modulo dasign
L Interface design

Componentt N

interface dascription [
r———\ algorithm description
T

5 ification # PODL
eJSpecmcullon‘ D

N)
tost plan —

lest procedure
tesl caces

SourceCade

22.2 THE SCM REPOSITORY

—
In the early days of software engineering, software confi

. tware cong guration items WEre maip.
tained as paper documents (or punched computer card

s, placed in file folders or
three-ring binders, and stored in metal gapipet_%- ThIS approach was provlemaic

many reasons: (1) finding a conﬁg-uﬁ?ion item whe 'IJN_aS_._erdgdkwas_oﬁen diff-
cult, (2) determining which items were changed, when and by whom was often chal-
TE?ﬁ:lTng, (3) constructi_ggfin_e_waversion-of an existing program was time co

nsuming
and error prone, and (4) describing detailed or complex relationships between con-

figuration items was virtually impossible.

Today,SCls are maintained in a project database or repository. Webster’s Dictio-

nary defines the word repository as “any thing or person thought of as a center of
accumulation or storage.”

_During_the early history of software engineering, the
repository was indeed a person—the programmer who had to remember the loca-
tion of all information relevant to a software proj

ect, who had to recall information
Tlﬁrwamverﬁfrmén“dc_)ﬁ and reconstruct information that had been lost. Sadl,

using & personas “Ihe center for accumulation and storage” (although it conforms
Lo Webster's definition) does not work very well. Today, the repository is a }_@_@_ -
a database that acts as the center for both-accumulation and storage of software e
gineering information. The role of the
with the re

) g : 1
person (the software engineer) is to interd
pository using tools that are integrated with it.

/2221 The Role of the Repository

The SCM repository is the
software team lo_manage
.. EAURED,

‘ wa

¢! of mechanisms and data structures that allﬂ)wu_
— ious

change In-an effective manner. It provides the oby

Scanned by CamScanner

\\ll\'\]. (| N}\ln”\l
{ l) | '\ ,\ il |
b 'NI‘

functions of
: ol \
sharing, and | Moderm databg 591
Sl i ¢] Y N &) A& . ‘
M) \ St . ALY sysle g
graton of sofware tools ton, the SCM eposi| M by ensuring data integrity,
N 'S ory |"“V| | ,h""*’t"" g
\ des ahub for the inte-

) l\ centy:
= \‘Lll‘ ”) .
e llow of 1)

SOlware N

force unttorm SUUCHyy
¢ ' o -
1€ sollware process, and can en-

o Bincering work products,

2 15 TIPS

tool illinny- Sdefined i terms of a meta-model.
- 0ls '“r‘—ﬁ:*\»_“"‘ e 15 H[()rcd —) _Tf"' o,

and integrity can be 1 Viewed by software engj In the repository, how data

_ aintained
o accommodate ney . »and how casily the

and I'nrmul lQr
Capabilitieg the v
terminey

To achieve thege
The meta .mdi(‘l de
can be accessed by
gineers, how well data security
existing model can be extended
\/'2'7 .9

fav i

Gener
eral Featureg and Content
The features and content ofthe
(G

sty A C . positor A \
perspectives: what is to pe Y are best understood by looking at it from two

, , stored i -
vided by the repository. A detaited by k ﬁPUStlot.y.and what specific services are pro-
‘ and other work products that are st Caddown of types of representations, documchts
g0 . A ored in the repository is presented in Fi |
i A 'OMquglpry provides two different C];S tol 3; Is presented in Figure 22.3.
: scs of services: (1) the same types

b of service i
ol CS that might be expected from any sophisticate p—T
- S).P—_fslem and O SeFicEs e ' phisticated database management
nde.on/ PR > thal are specific Lo the software engineering environment.
shgy/ RS y thalt serves a software engincering team should also (1) integrate-with
" or directly-support process manageme ions i -
gement functions, (2) support specific rules that

shory /index . : :
2 gov‘em_lhe SCM function and the data maintained within the repository, (3) provide
an/interface to other software engineering tools, and (4) accommodate storage of
s@phisticated data objecls (e.g., text, graphics, video, audio).

:', % SN/

Mﬂlﬂ,

e Use cases

Content of the Analysis model

epository Business rules ?Ii)?gr:ic;-szzegijac:grgns Source code
Business functions Class-based diog?oms Obiject code
Organization structure Behavioral diagrams System build instructions
Information architecture Design model Corsuntio

Architectural diagrams carent
Interface diagrams
Componentlevel diagrams

Technical metrics

Test cases
Tes! scripts
Test results
Quolity metrics

Businesg
content

content

V&Y
conten!

management

content
Project plan

SCM/SQA plan

Project estimates
Systern spec

Project schedule

SCM requirements Requirements spec
Change requests Design document 4
Change reports 7 Test plondand pro<':e ure

SQA requirements ~ Sypport documents

Project ?eporfs/ audit reports User manua

Project metrics

Scanned by CamScanner

22.2.3 SCM Features

a_})— To support SCM, the repository must have a tool set th
lowing features:
PQINT ‘

»
The repository must be Versioning, As a project progresses, many versions (Section 27 - -
. . . | — 4 i

capable of maintaining

AR
WOrk products will be crealed. The repository must be able to, S
SCIs reloted 1o many N p———

at provides SUPhon ¢
J lfl!,‘;

Vindy,

dVe

o X .'j” r'r” 4! 15
. . SI‘OHS [) C g y o Tt ! 3 -) ») (ICI. r l LASCS ¢ ; :f_‘."; ‘o
difforent versions of 0 cnable L”&L_IIV(, management of p'r ducl releases _Lmd to Permiy deyer.
the software. More L0 80 back 1o previous versions during testing and debugging, . "
importont, it must The repository must be able to control a wide variety of Object types
n v " . ' . . J)‘:‘), In(f
prO\;]de fhe f lext, graphics, bt maps, complex documents, and unique objects Jjy . Scree Udin,
mechanisms for : _—) o-CCNang.
_ ort definitions d results. A e
essembling fhese (s p » Object files, test data, an mature rep

OSilOry ”'-J(.'f‘ "

for €xample Single ﬂ

into 0 version-specic sions. of objects with arbitrary levels of granularity;
configuration, definition or a cluster of modules can be tracked.

The repository managesav,.uz
S stored in jt. These i)

€S, among the parts of a
enterprise information 4
0on. Some of these Telationshine
Or mandatory relationships. '

hips is crucial to the integn'z}-cf
generation of deliverables baseg
ions of the repository concept to
ample, if a UML class diagram is
ated classes, interface descriptions,
n and can bring affected SCis to e

Dependency tracking and change management.
U,A,U’M:) variety of r_(iationships among the data element
relationships between enterprise entities and process
Cation design, between design com and the
ture, between desién elements and deliverables, and s
are merely associations, and some are dependencies
The ability to keep track of all of these relations
the information stored in the repository and to the
on it, and it is one of the most important contribut
the improvement of the software process. For ex
modified, the repository can detect whether rel
and code components also require modificatio
developer’s attention.

INClyge
N anps.

p
Ichitec.

Requirements tracing. This special function depends on link managemen; and

“provides the ability twn—aﬂd—tonstmamomponems and deliv-
erables that result from a specific requirements specification (forward tracing. In
addition, it provides the ability to identify which requirement generated any give
work product (backward tracing).

. . -‘-‘...qr;"‘.\'
Configuration management. A configuration management facility-Keeps U

- . . P . [T il '!':\‘n
of a series of configurations representing specific project milestones or produc
releases.

)
Audit trails. An audit trail establishes additional information about \vhc"nq.:[:';-‘€
;n_wn*;h%ﬂges‘are made. Information about the source of Ch;“_]gc?,:w;h-
enlered as attributes of specific objects in the repository. A repository [rlgg‘:lmmw
anism is helpful for prompting the developer or the tool that is being l'-‘f‘d [quon cle-
entry of audit information (such as the reason for a change) whenever a Jesis
ment is modified.

N

Scanned by CamScanner

o] PTER 22 D \ O
HA SOFTWAR L CONTFIG Ul\.t\][\\l 93
r”\Nf\',‘,[r,{rNT Flf -

NI THE RCM PROCESS

—

The software configurs;
Suration management process defines a series of tasks that have

D . ur primary objectives: e
pole Iy (1) Lo identify al| T eallective
(A : onhoumlmn (2) to manaq(_m{/\vltgwt LO”LC“VQLE’E?“nC the software
o s pVe < Q("§ to one or I acilitate
n® fhe llu construction of derc.m v Zrouliese s - L
1'0f |ﬂ . €rsIons ot an apphcatnon and (4) to ensure-thal. =0ﬂ
mrt quality is mamtamud as the conﬁgUranon evolves i s
: med by A process that achieves these obj over time.
-.**J*‘ . St e Objectives need not be bureaucratlc or pondefOUS
rizedi
C s Namanner that enables a software team to develop an-
i sweys Lo a set of complex questions:
y pennett ‘
= How does Aonti :
o .a software team identify the discrete elements of a software
configuration?
: et o How does an organization T '
! cotons e manage the many existing versions of a program
o the S (@and its documentation) in a manner that will enable change to be accommo-
e) dated efficiently?
- r,lh_ . . .
.’ ” e How does an organization control changes before and after software is
released to a customer? .

» Who has responsibility for approving and ranking requested changes?
« How can we ensure that changes have been made properly?

» What mechanism is used to apprise others of changes that are made?

These questions lead to the definition of five SCM tasks—identification, version con-
trol, change control, configuration auditing, and reporting—illustrated in Figure 22.4.
Referring to the figure, SCM tasks can viewed as cQncentric layers. SCIs flow

outward through these layers throughout their useful life, ultimately becoming part

layers of the Software
M process Vm.n

~Configuration audifing

Version control

b S

Scanned by CamScanner

504 PART THREE GUALITY

of the solware mniiszlll'l”“” of one or more ver sions of an f'PI)l]-\'-.””]“ («
ve an SC1 moves through a layer, the ac tions implied by each scy task o, =
not b applicable. For example, W hen a new SCI s created, it myg he 7 Ot
However, 'll no changes are requested for the SCI, the change contr lay

srsion of the soltware (version

apply. The SClis assigne d ll\ aspecific ve Nt
anisms come into play). A record-of-the SCI (its name, creation date verg, ;,,“_
ol d
pnation. cte) is mamnle mu d tor u\HlH’llIdll(\H tllldlllm’ purposes and re POrte, ‘ '
fr,

with a need to kifow. In the sections that follow, we examine each Of the. '

process layers in more detail,

0 A / 2231 Identification of Objects in the Software Ccmfigurcrtioq
&\
\S""" £ - To control and manage software configuration items, each shoylg be sena
:, v ‘ R }'“\
catt\ named and then organized using an object-oriented approach. Two types 01»“-'
\of \ ¢ can beidentified [Cho89): basic objects and aggregate Ob]GLtS A basic objecy g o
: ——— s ayp,

of information that you create during analysis, design, ‘code, or test, For ey
b bt Awtetiyn. o i arw
basic object might be a section of a requirements SpeClﬁcaLlQD, part of adesy
model. source code for a component, or a suite of test cases that are ll\ed
\‘ Sonite Tk Bt LO 4__
cise the code. An aggregate ob/cct isa LO”CLUOI] OfbablC objects and ather aggrees,
objects. For C\ample a DesngnSpeciﬁcanon is an aggregate object. Conc p
it can be viewed as a named (identified) list of pointers that specify aggregate oa. ot
such as ArchitecturalModel and DataModel, and basic ol);ur.\ such as chpo
/_\—_
nentN and UMLClassDiagramN.
&0 Each object has a set of distinct features that identify it uniquely: a name :

description, a list of reqounccs, and arealization.” The object name is a character

POEN’T
e nterictionstis string that identifies the Oh]LLl unambiguously, The object description is a list of da
estoblished for items that idenlify the SCI type (¢.g., model element, program, data) representad 2

MITCRR

configuration objects m_a project uicnlmu, apd change and/or version iformation. Resouies

ollow you toassess the are “entities that are provid rocessed, referenced or otherwise required by &
impoct of chonge. object{Cho89]. For example, data types, specific funclions, or ev SOOI VATt R
may be considered to be objecl te%ou&_ql The]cah/mmn 1\ a pointer to the u ntd

text” for a basic object and null for an aggregate object. o
Configuration object identification can also consider the relationships that eus

between named objects. For example, using the simple nol lllt\lbo

\0
Class diagram < part-of > requirements model; [1 \’ v/
Requiremente model < part-of ~ requirements upnclﬂonllun. Ov(v . L\
o
\}

you can creale a hierarchy ol SCIs.

3 The concept of an aggregate object |Gus89] has been proposed as a mechanisit)
complete version of a software configuration,

\
a1y
W e
\

Scanned by Camanner

" -::'ﬂ;"&r.
e

" § ¢
4 2f3.2 Version Con

AGEMp
In many cas SHEMEN
es Obl A~ nOK
' ects %Pt H95
These cross-stry 2 A interpe
Clurg] "elationgh, lateq ACTOSS branchee o _ _
DataMode| PS can be ePresente l "tb of the object hicrarchy.
& <interrelgjaq-. i cdinthe following manner:
DataMode] MaFlowMo |

~interrelateq-~.

In the ﬁrs_t case, the interrelatlo in i
ond re]allonship is betweg, s
(TestCaseClassM)

The identification sche

throughout the software

~hacomposite object, while the sec-
ject (DataModel) and a basic object

me for sofpy,
vare ohi
Process. Beforee Obje?ts must recognize that objects evolve
aseline has pee . Ob].ect is baselined, it may change many
Nl €stablisheq, changes may be quite fyequent.
A2

chpme® =

troi

dur :
Uring the software process. A version control sys-

\ \ four ﬁiai - co bilities: '
database (reposito . JOr capabillities: (1) a project
e — P >ory) that S.t_(?lﬁﬁlﬁﬁlﬁ-\/ampconﬁgurationobjects, (2) a version man-_
agement capability that stores 3 S

1 . . P—.-—.-———‘
I Versions of a configuration object (or enables any
differences from past versions), (3) a make facility—
evant confi i i gy
) . vant configuration objgcts and construct a specific
Verwware‘ [n addition, version control and change control systems of-
ten implement an Issues tracki B

- ng (also called bug tracking) capability that enables the
team to record and tratk the status of all outstandipg issues associated with each
configuration object. — -d

version to be constructed using
that enables you to collect all re]

A number of version control systems establish a change set—a collection of all
changes (to some baseline configuration) that are required to create a specific ver-
siomofthe software. Dart [Dar91] notes that a change set “captures all changes to all
files in the configuration along with the reason for changes and details of who made

the changes and when.”

A number of named change sets can be identified for an application or system. This
enables you to construct a version of the software by specifying the'chan.ge sets (by
name) that must be applied to the baseline con_ﬁEULa,UQQ~ To accomplish this, z 1 system
modeling approach is applied. The system model contains: (1) a {emplate _t.hat mtm::‘s"
afmfﬁﬁzrqr;hy_éng a “build order” for the components ‘t.hat d.escn ibes l:ow the
systemzanstructed. (2) construction rules, and (;) verification rules,

‘ t automated approaches to version control haye been pr.o-

B des. The primary difference in approaches is the sophis-
It)icc)zficg :\(/)efrt :;ealta:rsitb f:lit\:sd;‘;i are. used to construct specific versions and variants of a

ction.
system and the mechanics of the process for constru

how a change in one component will impact

4 Itisalso possible to qUE
other components.

ry the system model to assess

Scanned by CamScanner

596

| ————— e

The Concurrent
The use of tools to achieve version
essential for effective change
Concurrent Versions System (CVS) is a s
version control. Originally designed for source co
useful for any text-based file, the CVS system (Me
a simple repository, (2) maintains all versions of a file ina
single named file by storing only the differences be
progressive versions of the original file, ond (3) protects
against simultaneous changes to a file by establishing
different directories for each developer, thus insulating one
from another. CVS merges changes when each developer

completes her work.
It is important to note that CVS is not a "build” system;

@? is, it does not construct a specific version of the

PART THREE QUALITY 5.1;'\”/'\"'-}1".!'”?

system (CV5)
software. Other tools (e.g., Makefile) U3t b -
with CVS to (1cc0mp||sh this. CVS does ol imlntﬁ.q,%!J 1

|
change control process (e.g., changa recquasy ?'-‘n
k. _; s' c

reports, bug fracking).

Even with these limitations, CVS s o dor
source network-fransparent version confro)| Mirieyny -
useful for everyone from individual develope,
distributed teams” [CVSO7]. Its client—server‘qS '}?-'fxr'ﬁ,
allows users to access files via Internet conne "ehitery,

hl h l('f . chi ns a i
open-source philosophy makes i availghla «Ond
20n Mast o

\ § /7 TR18 LS
VEersioiis

control is

managemenl. The

videly vsed tool for
de, but

stablishes

te I

nr%

ween

popular platforms.
CVS is available at no cost for Windoy, Mo
» Mag

LINUX, and UNIX environments. See [CVS07) 1, f

.
\)I

. I
details. ther

.

“The art of
progress is fo
preserve order
amid change and
to preserve change
amid order.”

Alfred North

Whitehead

T
6;,.:_
POINT

It should be noted thot
a number of change
requests moy be
combined to result in 0
single £CO ond fhot
ECOs typically result in
changes to multiple
configuration objects.

\\\ .

/22.3.3 Change Control

The reality of change control in a modern software engineering context hgs bee

summed up beautifully by James Bach [Bac98]: n
Change control is vital. But the forces that make it necessary also make it annoying, ye
worry about change because a tiny f perturbation in the code can create a-big failure in the
product. But it can also fix a big failure or enable wonderful new capabilities. we worry
abolt chang’e because a single rogue developer could sink the project; yet brilliant idezs
originate in the minds of those rogues, and a burdensome change control process could

effectively discourage them from doing creative work.

Bach recognizes that we face a balancing act. Too much change control and we
create problems. Too little, and we create other problems.
For a large software project, uncontrolled change rapidly leads to chaos. For such
projects, change control combines human procedures and automated tools to pre-
vide a mechanism for the coMe_ The change control process is illustrated
schematically in Figure 22.5. A change request is submitted and evaluated to assess
technical merit, potential side effects, overall impact on other configuration objects
and system functions, and the projected cost of the change. The results of the €V§l'
uatfbrﬁfé/pr’/m;s a change report, which is used by a Chwﬂﬂ@@
(CCA)—a person or group that makes a final decision on the status and priorty ofté
change. An engineering change order (ECO) is generated for each approved changj-
The ECO dm to be made, the constraints that must bé respect®®

and the criteria for review and audit. fely

. i O
e o) 0 b changedcan be placed in diecory a5
by t are engineer making the change. A version control system (5% tr:lative,

sidebar) updates the original file once the change has been made. As an alte

Scanned by CamScéﬁ"ﬁef

Pz -

PTER 22 SOFTV “ONF
CHA WARE CONFIGURATION MANAGEMENT rw

Nead for change is recognized

o Change request from user
L

Developer evaluates
L

Change report is generated

Change control authority decides

\

Request is queued for action, ECO generated Change request is denied

Assign individuals o configuration objects User is informed

“Check out” configurafion objects (items) JI‘«G vg&(
Y 9»’3" i~
Make the change—" ‘M//#é * C (r;j))
| S

—
Review (audit) the change

“Check in" the configuration items that have been changed
Establish a baseline for testing

Perform quality assurance and testing activities

\
“Promote” changes for inclusion in next release (revision)

Rebuild appropriate version of software
Review (audit) the change fo all configuration items

Include changes in new version

{

Distribute the new version

the object(s) to be changed canbe “checked out” of the project database (repository),
the change is made, and appropriate SQA activities are applied. The object(s) is
(are) then “checked in” to the database and appropriate version control mechanisms
(Section 22.3.2) are used to create the next version of the software.

These version control mechanisms, integrated within the change control process,
implement two important elements of change management—access control and
synchronization control. Access control governs which software engineers have the
authority fo access and modify a particular_configuration-object. Synchronization
contro] helps to ensure that parallel changes, performed by~two different people,

don‘t overwrite one another.

Scanned by CamScanner

598
kc-,.,"'l"‘v'!&ig‘?\

0pt for 0 bit more
(l'":f confro/ than
vou think you'l need
It's likely that too
much will be the right

amount.

T

g Y

K-\ .. uvote:
“Change is
inevitable, except
for vending
machines.”

Bumper sticker

PART THREE QUALITY MANAGEMENT :

level of bureaucracy imp)j, At

v 22.5.-This feel Ly
control Process dese ”P“(‘n shown intk H)lll(220D)]|H' Is Neyt Hrlr }"jr"'

change control canre tard progress ap te: Ot

you may feel uncomfortable with the

Withoul proper safegu: uds,

d
\) i
sarv red tape. Most software deve lopers who have change controf e, i e

fortunately, many have none) have ¢1¢ ated a number of Tayers o (rjr:r.fl.l,ﬁ" ly
avoid the problems alluded to here. 'y, b
Prior to an SCl becoming a baseline, only IN/”I”'”’"”“”" CONol neg, A he
The developer of the configuration object (g(I in question may . ke ‘,,J Dlieg
changes are justified by project and technical requirements (as long - , “fl e
nol aflect broader system requirements that lic outside the deye lopep. jJ#
work). Once the object has undergonc technical review and has been dpp’n’),ﬂ o
Mo

baseline.can be created.” Once an SCI becomes a bascline, projecy levey ¢,
controlis: 11111Lcmcmed Now, Jo make a change, the developer m\fﬁd, ‘rp'
from the project manager (if the change is “local”) or from the Ccp if the m’”&
affects other SCIs. In some cases, formal generation of change requests 'hdr'
reports, and ECOs is dispensed with. However, assessment of each Chanoe e
ducted and all changes are tracked and reviewed.

When the software product is released to customers, formal change copy,, o
instituted. The formal change control procedure has been outlined in Figure 773

The change control authority plays an active role in the second and thirg)ﬂ)'ers ;
control. Depending on the size and character of a software project, the cc May b
composed of one person—the project manager—or a : number of people (e 2. Tepre.
sentatives from software, ha\dWHTE‘darabaﬁengmeermg Support, marketing) 1y,
role of the CCA is to take a global view, that is, to assess the impact of chanoe 1-.:-
yond the SCI in question. How will the change affect hardware? How will the change
affect performance? How will the change modify customers’ perception of the prog-
uct? How will the change affect product quality and reliability? These and many other
questions are addressed by the CCA.

SAFEHOME

the SafeHome software project begins.

SCM Issues

The scene: Doug Miller’s office as The conversation:

Doug: | know it's early, but we've got to talk about

The players: Doug Miller (manager of the SafeHome change management. 4
software engineering team) and Vinod Raman, Jamie Vinod (laughing): Hardly. Marketing called rhxs‘
Lazar, and other members of the product software morning with a few “second thoughts.” Nothing majof

engineering team.

but it's just the beginning.

e Lh
5 A basehne can be created for other reasons as well. For example, when “daily buxld:1 :\LI
all components checked in by a given time become the baseline for the next day's We

Scanned by CamScan’n'é'r

CHAPTER 22 OV T At

o o it '!“',.' "0}
4\‘/”';"“')"’.'" 4 "'11";1»-1'1";»f11
" 5‘;1:&],”.5”0\

s
.

— bt this 14 | 10001 and more visihle
(o |

i "»’itf
o
:J[ﬂodd‘ng): We ’?"l "HMI L/ "'!".'.‘vu!lmi

Leshoy bl

; Y 1] CONtre . !

) - B home highnng co P presect resrverydyer
,4f’""‘

- y

’ ning’: A rnv!‘vhn'nlf ﬂu” I'el l"”‘{"' not 1o
el

#

hest do we do?
o, QoW
wt’ $

2. | g0 1, hren lhmg'., First e hqvq 1o

. K
0 borrow—0 (.'l()ng': control Process,
A

4o You e how people reques) changes?

/zf 3.4 Configuration Audit

ldentification, version control,
what would otherwise be cha

Y20

v"‘ﬁdl YI r,‘i ‘

D"'mq: Ser e A

v
ot '.,,,‘,‘,‘ W

Jamiag . ean il

gm.:f-m-.

Vinod: 1.
oo Vol prereide
Doug: Ty,
Jamie: Uh,

and change control help you to maintain order in
otic and fluid situation. However, even the most suc-
cessful control mechanisms track a change only until an ECO is gene

Pt od » ; &

ey

701 ety pvprshs by B rhs e
when e d , _ :
) ey '((; eW's shuit ne o he { v
) b ¢
f '”"' f ‘ NJ",'- »_“»,'._.‘, / o r Ve s
4 7] {1 - & '
, ey ye "i',.": el 7y g Yy cper! v/'!/ “r

| BN ¢t

7 /!«;l,“,J-!. f," ,‘A; ,“ Rt ey

J {

710 eniled 01 in Biis rertapt redd ot
SN S beyr o

] !j’//] Nt nerar vie repies be

Ooug, yous wiid thera were thees # ngs .

DOUQ (lmiling): Third—<se’va /1 s ve) crremit b5
fallrsr the chane

40 monagement process and uwe e

tooli—no matter whet, oher /%

- v = -
erated. How can

a software team cnsure that he (ha[]gf_ has been prr_)per]-.': imp!emf:n_f;;d? The an-

cu

swer is twofold: (1) technical reviews and (
The technical review (Chapter 15) focuzes on thetech nical CaITECNEss D

2) the software configuration audit.

—

the con-
L . \ Essoft —
figuration object that has been modified. The reviewers assess the SCI to determine

consistency with other SCis, omissions, or potential side effects. A technical review

i
'
LRty

should be conducted for all but the most trivial changes.
A software confipuration audit complemegnts the technical review by assessing a

configuration object for characteristics that are generally not considered during re-

4
it are fhe

view. The audit asks and answers the following questions:

I. Has the change specified in the ECO been made? Have any additional modifi-

ey

»’(” v cations been incorporated?

: 2. Has a technical review been conducted to assess technical correctness?

| 3. Has the software process been followed and have software engineering
standards been properly applied?

4. Has the change been “highlighted” in the SCI? Have the change date and
change author been specified? Do the attributes of the configuration object
reflect the change? - |

5. Have SCM procedures for noting the change, recording it, and reporting it
been followed?

6. Have all related SCls been properly updated?

Scanned by CamScanner

600

ﬁa wczif@

Develop @ “need fo
know” kst for every
configuration object
and keep it up-to-date.
¥hen ¢ change is
made, be sure that
evaryone on the list is

notified.

PART THREE QUALITY M /\N;\\ﬂin‘\iﬁ?\l [
asked as part of a technica) .,
-l Cle
d“(')n 4

S

; a1 INCOrne dudj
L‘I'Slﬂll) hﬂVU I)LL.I] |nL()|P()r{][C(l lnto Il ‘JIT,
g, 0

,-1o-date and consistent with the ye °Dr_‘(mr
r M .

ye audit questions are ‘ ‘
TFivi » configuration audit j

activity, the cont é d.n is congy,

such formal configuy

In some cases, tl
ever, when SCM s a formal
rately by the qualily assurance
ensure that the correct 5Cls (by V
build and that all documentation is uj

E:'”UP'

has been built.

22.3.5 Status Reporting

Configuration status reporting (sometimes called stattis accounting) is an C
hal answers e Tollowing questions: (1) what happened? (2) Whodig ji
did it happen? (4) What else will be affected?

The flow of information for configuration status reporting (Csg) s illusy
in Figure 22.5. anw_@ﬁ_q updated i.qg‘t\iﬁcali()n, aactm
entry is made. Each time a change i,S,aPProved‘by‘the .CCA (ie., an Eé‘o‘ig{ssuezg
a CSR entry is made. Each time a configuration audit is conducted, the results arj'
reported as part of the CSR task. Output from CSR may be placed in an onjipe dat:
base or websit& 5o that software developers or support staff can access change jp.
formation by keyword category. In addition, a CSR report is generated-an 3 reguly
basis and is iwa_@ggme_mand practitioners appraised of importan;

M tag
3) Whe,

changes.
>4

4

’ SCM Support

Objective: SCM fools provide support fo one
or more of the process activities discussed in
Section 22.3.

Mechanics: Most modern SCM tools work in conjunction
with a repository (a database system) and provide
mechanisms for identification, version and change control,
avditing, and reporting.

Representative Tools:®

CCC/Harvest, distributed by Computer Associates
(www.cai.com), is a multiplatform SCM system.

ClearCase, developed by Rational, provides a family of
SCM functions (www-306.ibm.com/software/
awdtools/clearcase/index.html).

Serena ChangeMan ZMF, distributed by Serena
(www.serena.com/US/products/zmf/index

K.aspx), provides a full set of SCM tools that are

applicable for both conventional software and
WebApps.

SourceForge, distributed by VA Software
(sourceforge.net), provides version managemen,
build capabilities, issue/bug tracking, and many other
management features.

SurroundSCM, developed by Seapine Software, provides
complete change management capabilities
(www.seapine.com).

Vesta, distributed by Compac, is a public domain SCMd
system that can support both small (<10 KLOC| o
large (10,000 KLOC) projects
(www.vestasys.org). J

A comprehensive list of commercial SCM tools on
environments can be found at
www.cmtoday.com/yp/

- merduthml.

6 Tools noted here do not represent an endorsement, but rather a sampling of 1

atege”

ools in this ¢

In most cases, tool names are trademarked by their respective developers:

Scanned by CamScanner

