
March 15, 2001 16:25 sch95591_ch01 Sheet number 1 Page number 1 black

1

P A R T

1
INTRODUCTION TO SOFTWARE

ENGINEERING

The first nine chapters of this book play a dual role. They introduce the reader to the software process, and
they also provide an overview of the book. The software process is the way we produce software. It starts with
concept exploration and ends when the product is finally decommissioned. During this period, the product
goes through a series of phases such as requirements, specification, design, implementation, integration,
maintenance, and ultimately, retirement. The software process also includes the tools and techniques we use
to develop and maintain software as well as the software professionals involved.

In Chapter 1, “The Scope of Software Engineering,” it is pointed out that techniques for software pro-
duction must be cost effective and promote constructive interaction between the members of the software
production team. The importance of objects is stressed throughout the book, starting with this chapter.

“The Software Process” is the title of Chapter 2. Each phase of the process is discussed in detail. Many
problems of software engineering are described, but no solutions are put forward in this chapter. Instead, the
reader is informed where in the book each problem is tackled. In this way, the chapter serves as a guide to the
rest of the book. The chapter concludes with material on software process improvement.

A variety of different software life-cycle models are discussed in detail in Chapter 3, “Software Life-Cycle
Models.” These include the waterfall model, the rapid prototyping model, the incremental model, extreme
programming, the synchronize-and-stabilize model, and the spiral model. To enable the reader to decide on an
appropriate life-cycle model for a specific project, the various life-cycle models are compared and contrasted.

Chapter 4 is entitled “Teams.” Today’s projects are too large to be completed by a single individual within
the given time constraints. Instead, a team of software professionals collaborate on the project. The major
topic of this chapter is how teams should be organized so that team members work together productively.
Various different ways of organizing teams are discussed, including democratic teams, chief programmer
teams, synchronize-and-stabilize teams, and extreme programming teams.

Chapter 5 discusses “The Tools of the Trade.” A software engineer needs to be able to use a number of
different tools, both theoretical and practical. In this chapter, the reader is introduced to a variety of software
engineering tools. One such tool is stepwise refinement, a technique for decomposing a large problem
into smaller, more tractable problems. Another tool is cost–benefit analysis, a technique for determining
whether a software project is financially feasible. Then, computer-aided software engineering (CASE) tools are

March 15, 2001 16:25 sch95591_ch01 Sheet number 2 Page number 2 black

2 P A R T 1 • ���⁄˙˝˛fl�⁄˙� �˙
˙��fifl⁄� ��ı⁄���⁄⁄�ı

described. A CASE tool is a software product that assists software engineers to de-
velop and maintain software. Finally, to manage the software process, it is necessary
to measure various quantities to determine whether the project is on track. These
measures (metrics) are critical to the success of a project.

The last two topics of Chapter 5, CASE tools and metrics, are treated in detail
in Chapters 10 through 16, which describe the specific phases of the software life
cycle. There is a discussion of the CASE tools that support each phase, as well as a
description of the metrics needed to manage that phase adequately.

An important theme of this book is that testing is not a separate phase to be carried
out just before delivering the product to the client or even at the end of each phase
of the software life cycle. Instead, testing is performed in parallel with all software
production activities. In Chapter 6, “Testing,” the concepts underlying testing are
discussed. The consideration of testing techniques specific to individual phases of the
software life cycle is deferred until Chapters 10 through 16.

Chapter 7 is entitled “From Modules to Objects.” A detailed explanation is given
of classes and objects, and why the object-oriented paradigm is proving to be more
successful than the structured paradigm. The concepts of this chapter then are utilized
in the rest of the book, particularly Chapter 12, “Object-Oriented Analysis Phase,”
and in Chapter 13, “Design Phase,” in which object-oriented design is presented.

The ideas of Chapter 7 are extended in Chapter 8, “Reusability, Portability, and
Interoperability.” It is important to be able to write reusable software that can be
ported to a variety of different hardware and run on distributed architectures such
as client–server. The first part of the chapter is devoted to reuse; the topics include
a variety of reuse case studies as well as reuse strategies such as object-oriented
patterns and frameworks. Portability is the second major topic; portability strategies
are presented in some depth. The chapter concludes with interoperability topics such
as CORBA and COM. A recurring theme of this chapter is the role of objects in
achieving reusability, portability, and interoperability.

The last chapter in Part 1 is Chapter 9, “Planning and Estimating.” Before starting
a software project, it is essential to plan the entire operation in detail. Once the
project begins, management must closely monitor progress, noting deviations from
the plan and taking corrective action where necessary. Also, it is vital that the client
be provided accurate estimates of how long the project will take and how much it will
cost. Different estimation techniques are presented, including function points and
COCOMO II. A detailed description of a software project management plan is given.
The material of this chapter is utilized in Chapters 11 and 12. When the classical
paradigm is used, major planning and estimating activities take place at the end of the
specification phase, as explained in Chapter 11. When software is developed using the
object-oriented paradigm, this planning takes place at the end of the object-oriented
analysis phase (Chapter 12).

March 15, 2001 16:25 sch95591_ch01 Sheet number 3 Page number 3 black

3

c h ap t e r

1
THE SCOPE OF SOFTWARE ENGINEERING

A well-known story tells of an executive who received a computer-generated bill for $0.00. After having a
good laugh with friends about “idiot computers,” the executive tossed the bill away. A month later a similar bill
arrived, this time marked 30 days. Then came the third bill. The fourth bill arrived a month later, accompanied
by a message hinting at possible legal action if the bill for $0.00 was not paid at once.

The fifth bill, marked 120 days, did not hint at anything—the message was rude and forthright, threatening
all manner of legal actions if the bill was not immediately paid. Fearful of his organization’s credit rating in
the hands of this maniacal machine, the executive called an acquaintance who was a software engineer and
related the whole sorry story. Trying not to laugh, the software engineer told the executive to mail a check
for $0.00. This had the desired effect, and a receipt for $0.00 was received a few days later. The executive
carefully filed it away in case at some future date the computer might allege that $0.00 was still owing.

This well-known story has a less well-known sequel. A few days later the executive was summoned by
his bank manager. The banker held up a check and asked, “Is this your check?”

The executive agreed that it was.
“Would you mind telling me why you wrote a check for $0.00?” asked the banker.
So the whole story was retold. When the executive had finished, the banker turned to him and she quietly

asked, “Have you any idea what your check for $0.00 did to our computer system?”
A computer professional can laugh at this story, albeit somewhat nervously. After all, every one of us has

designed or implemented a product that, in its original form, would have resulted in the equivalent of sending
dunning letters for $0.00. Up to now, we have always caught this sort of fault during testing. But our laughter
has a hollow ring to it, because at the back of our minds is the fear that someday we will not detect the fault
before the product is delivered to the customer.

A decidedly less humorous software fault was detected on November 9, 1979. The Strategic Air Command
had an alert scramble when the worldwide military command and control system (WWMCCS) computer
network reported that the Soviet Union had launched missiles aimed toward the United States [Neumann,
1980]. What actually happened was that a simulated attack was interpreted as the real thing, just as in the
movie WarGames some 5 years later. Although the U.S. Department of Defense understandably has not given
details about the precise mechanism by which test data were taken for actual data, it seems reasonable to
ascribe the problem to a software fault. Either the system as a whole was not designed to differentiate between
simulations and reality, or the user interface did not include the necessary checks for ensuring that end users

March 15, 2001 16:25 sch95591_ch01 Sheet number 4 Page number 4 black

4 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

JUST IN CASE YOU WANTED TO KNOW

In the case of the WWMCCS network, disaster was
averted at the last minute. However, the consequences
of other software faults sometimes have been tragic. For
example, between 1985 and 1987, at least two patients
died as a consequence of severe overdoses of radiation
delivered by the Therac-25 medical linear accelerator
[Leveson and Turner, 1993]. The cause was a fault in
the control software.

During the 1991 Gulf War, a Scud missile pen-
etrated the Patriot antimissile shield and struck a
barracks near Dhahran, Saudi Arabia. In all, 28 Ameri-
cans were killed and 98 wounded. The software for the
Patriot missile contained a cumulative timing fault. The
Patriot was designed to operate for only a few hours at

a time, after which the clock was reset. As a result, the
fault never had a significant effect and therefore was
not detected. In the Gulf War, however, the Patriot mis-
sile battery at Dhahran ran continuously for over 100
hours. This caused the accumulated time discrepancy to
become large enough to render the system inaccurate.

During the Gulf War, the United States shipped Pa-
triot missiles to Israel for protection against the Scuds.
Israeli forces detected the timing problem after only 8
hours and immediately reported it to the manufacturer
in the United States. The manufacturer corrected the
fault as quickly as it could but, tragically, the new soft-
ware arrived the day after the direct hit by the Scud
[Mellor, 1994].

of the system would be able to distinguish fact from fiction. In other words, a software
fault, if indeed the problem was caused by software, could have brought civilization
as we know it to an unpleasant and abrupt end. (See the Just in Case You Wanted to
Know box above for information on disasters caused by other software faults.)

Whether we are dealing with billing or air defense, much of our software is
delivered late, over budget, and with residual faults. Software engineering is an attempt
to solve these problems. In other words, software engineering is a discipline whose
aim is the production of fault-free software, delivered on time and within budget, that
satisfies the user’s needs. Furthermore, the software must be easy to modify when
the user’s needs change. To achieve these goals, a software engineer has to acquire a
broad range of skills, both technical and managerial. These skills have to be applied
not just to programming but to every phase of software production, from requirements
to maintenance.

The scope of software engineering is extremely broad. Some aspects of software
engineering can be categorized as mathematics or computer science; other aspects
fall into the areas of economics, management, or psychology. To display the wide-
reaching realm of software engineering, five different aspects now will be examined.

1.1 HISTORICAL ASPECTS
It is a fact that electric power generators fail, but far less frequently than payroll
products. Bridges sometimes collapse, but considerably less often than operating
systems. In the belief that software design, implementation, and maintenance could be

March 15, 2001 16:25 sch95591_ch01 Sheet number 5 Page number 5 black

1.1 ˇ�
�˘¯�˚¸ß ¸
æ�˚�
 5

put on the same footing as traditional engineering disciplines, a NATO study group in
1967 coined the term software engineering. The claim that building software is similar
to other engineering tasks was endorsed by the 1968 NATO Software Engineering
Conference held in Garmisch, Germany [Naur, Randell, and Buxton, 1976]. This
endorsement is not too surprising; the very name of the conference reflected the belief
that software production should be an engineeringlike activity. A conclusion of the
conferees was that software engineering should use the philosophies and paradigms
of established engineering disciplines to solve what they termed the software crisis;
namely, that the quality of software generally was unacceptably low and that deadlines
and cost limits were not being met.

Despite many software success stories, a considerable amount of software still
is being delivered late, over budget, and with residual faults. That the software crisis
still is with us, over 30 years later, tells us two things. First, the software production
process, while resembling traditional engineering in many respects, has its own unique
properties and problems. Second, the software crisis perhaps should be renamed the
software depression, in view of its long duration and poor prognosis.

Certainly, bridges collapse less frequently than operating systems. Why then
cannot bridge-building techniques be used to build operating systems? What the
NATO conferees overlooked is that bridges are as different from operating systems
as chalk is from cheese.

A major difference between bridges and operating systems lies in the attitudes of
the civil engineering community and the software engineering community to the act
of collapsing. When a bridge collapses, as the Tacoma Narrows bridge did in 1940,
the bridge almost always has to be redesigned and rebuilt from scratch. The original
design was faulty and posed a threat to human safety; certainly, the design requires
drastic changes. In addition, the effects of the collapse in almost every instance will
have caused so much damage to the bridge fabric that the only reasonable thing is
to demolish what is left of the faulty bridge, then completely redesign and rebuild
it. Furthermore, other bridges built to the same design have to be carefully inspected
and, in the worst case, redesigned and rebuilt.

In contrast, an operating system crash is not considered unusual and rarely triggers
an immediate investigation into its design. When a crash occurs, it may be possible
simply to reboot the system in the hope that the set of circumstances that caused the
crash will not recur. This may be the only remedy if, as often is the case, there is no
evidence as to the cause of the crash. The damage caused by the crash usually will
be minor: a database partially corrupted, a few files lost. Even when damage to the
file system is considerable, backup data often can restore the file system to a state not
too far removed from its precrash condition. Perhaps, if software engineers treated
an operating system crash as seriously as civil engineers treat a bridge collapse, the
overall level of professionalism within software engineering would rise.

Now consider a real-time system, that is, a system able to respond to inputs from
the real world as fast as they occur. An example is a computer-controlled intensive care
unit. Irrespective of how many medical emergencies occur virtually simultaneously,
the system must continue to alert the medical staff to every new emergency without
ceasing to monitor those patients whose condition is critical but stable. In general,
the failure of a real-time system, whether it controls an intensive care unit, a nuclear

March 15, 2001 16:25 sch95591_ch01 Sheet number 6 Page number 6 black

6 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

reactor, or the climatic conditions aboard a space station, has significant effects. Most
real-time systems, therefore, include some element of fault tolerance to minimize the
effects of a failure. That is, the system is designed to attempt an automatic recovery
from any failure.

The very concept of fault tolerance highlights a major difference between bridges
and operating systems. Bridges are engineered to withstand every reasonably antici-
pated condition: high winds, flash floods, and so on. An implicit assumption of all too
many software builders is that we cannot hope to anticipate all possible conditions
that the software must withstand, so we must design our software to try to mini-
mize the damage that an unanticipated condition might cause. In other words, bridges
are assumed to be perfectly engineered. In contrast, most operating systems are as-
sumed to be imperfectly engineered; many are designed in such a way that rebooting
is a simple operation that the user may perform whenever needed. This difference
is a fundamental reason why so much software today cannot be considered to be
engineered.

It might be suggested that this difference is only temporary. After all, we have
been building bridges for thousands of years, and we therefore have considerable
experience and expertise in the types of conditions a bridge must withstand. We have
only 50 years of experience with operating systems. Surely with more experience,
the argument goes, we will understand operating systems as well as we understand
bridges and so eventually will be able to construct operating systems that will not fail.

The flaw in this argument is that hardware, and hence the associated operating
system, is growing in complexity faster than we can master it. In the 1960s, we
had multiprogramming operating systems; in the 1970s, we had to deal with virtual
memory; and now, we are attempting to come to terms with multiprocessor and
distributed (network) operating systems. Until we can handle the complexity caused
by the interconnections of the various components of a software product such as an
operating system, we cannot hope to understand it fully; and if we do not understand
it, we cannot hope to engineer it.

Part of the reason for the complexity of software is that, as it executes, software
goes through discrete states. Changing even one bit causes the software to change
state. The total number of such states can be vast, and many of them have not been
considered by the development team. If the software enters such an unanticipated
state, the result often is software failure. In contrast, bridges are continuous (ana-
log) systems. They are described using continuous mathematics, essentially calculus.
However, discrete systems such as operating systems have to be described using dis-
crete mathematics [Parnas, 1990]. Software engineers therefore have to be skilled in
discrete mathematics, a primary tool in trying to cope with this complexity.

A second major difference between bridges and operating systems is mainte-
nance. Maintaining a bridge generally is restricted to painting it, repairing minor
cracks, resurfacing the road, and so on. A civil engineer, if asked to rotate a bridge
through 90° or to move it hundreds of miles, would consider the request outrageous.
However, we think nothing of asking a software engineer to convert a batch operating
system into a time-sharing one or to port it from one machine to another with totally
different architectural characteristics. It is not unusual for 50 percent of the source

March 15, 2001 16:25 sch95591_ch01 Sheet number 7 Page number 7 black

1.2 �˚˘œ˘ø�˚ ¸
æ�˚�
 7

code of an operating system to be rewritten over a 5-year period, especially if it is
ported to new hardware. But no engineer would consent to replacing half a bridge;
safety requirements would dictate that a new bridge be built. The area of maintenance,
therefore, is a second fundamental aspect in which software engineering differs from
traditional engineering. Further maintenance aspects of software engineering are de-
scribed in Section 1.3. But first, economic-oriented aspects are presented.

1.2 ECONOMIC ASPECTS
An insight into the relationship between software engineering and computer science
can be obtained by comparing and contrasting the relationship between chemical
engineering and chemistry. After all, computer science and chemistry are both sci-
ences, and both have a theoretical component and a practical component. In the case
of chemistry, the practical component is laboratory work; in the case of computer
science, the practical component is programming.

Consider the process of extracting gasoline from coal. During World War II, the
Germans used this process to make fuel for their war machine because they largely
were cut off from oil supplies. While the antiapartheid oil embargo was in effect, the
government of the Republic of South Africa poured billions of dollars into SASOL
(an Afrikaans acronym standing for “South African coal into oil”). About half of
South Africa’s liquid fuel needs were met in this way.

From the viewpoint of a chemist, there are many possible ways to convert coal
into gasoline and all are equally important. After all, no one chemical reaction is more
important than any other. But from the chemical engineer’s viewpoint, at any one time
there is exactly one important mechanism for synthesizing gasoline from coal—the
reaction that is economically the most attractive. In other words, the chemical engineer
evaluates all possible reactions, then rejects all but that one reaction for which the
cost per liter is the lowest.

A similar relationship holds between computer science and software engineering.
The computer scientist investigates a variety of ways to produce software, some good
and some bad. But the software engineer is interested in only those techniques that
make sound economic sense.

For instance, a software organization currently using coding technique CTold

discovers that new coding technique, CTnew, would result in code being produced in
only nine-tenths of the time needed by CTold and, hence, at nine-tenths of the cost.
Common sense seems to dictate that CTnew is the appropriate technique to use. In fact,
although common sense certainly dictates that the faster technique is the technique
of choice, the economics of software engineering may imply the opposite.

One reason is the cost of introducing new technology into an organization. The
fact that coding is 10 percent faster when technique CTnew is used may be less im-
portant than the costs incurred in introducing CTnew into the organization. It may be
necessary to complete two or three projects before recouping the cost of training.

March 15, 2001 16:25 sch95591_ch01 Sheet number 8 Page number 8 black

8 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

Also, while attending courses on CTnew, software personnel are unable to do produc-
tive work. Even when they return, a steep learning curve may be involved; it may take
months of practice with CTnew before software professionals become as proficient
with CTnew as they currently are with CTold. Therefore, initial projects using CTnew

may take far longer to complete than if the organization had continued to use CTold.
All these costs need to be taken into account when deciding whether to change to
CTnew.

A second reason why the economics of software engineering may dictate that
CTold be retained is the maintenance consequence. Coding technique CTnew indeed
may be 10 percent faster than CTold, and the resulting code may be of comparable
quality from the viewpoint of satisfying the client’s current needs. But the use of
technique CTnew may result in code that is difficult to maintain, making the cost of
CTnew higher over the life of the product. Of course, if the software developer is
not responsible for any maintenance, then, from the viewpoint of just that developer,
CTnew is a most attractive proposition. After all, use of CTnew would cost 10 percent
less. The client should insist that technique CTold be used and pay the higher initial
costs with the expectation that the total lifetime cost of the software will be lower.
Unfortunately, often the sole aim of both the client and the software provider is
to produce code as quickly as possible. The long-term effects of using a particular
technique generally are ignored in the interests of short-term gain. Applying economic
principles to software engineering requires the client to choose techniques that reduce
long-term costs.

We now consider the importance of maintenance.

1.3 MAINTENANCE ASPECTS
The series of steps that software undergoes, from concept exploration through final
retirement, is termed its life cycle. During this time, the product goes through a
series of phases: requirements, specification, design, implementation, integration,
maintenance, and retirement. Life-cycle models are discussed in greater detail in
Chapter 3; the topic is introduced at this point so that the concept of maintenance can
be defined.

Until the end of the 1970s, most organizations were producing software using
as their life-cycle model what now is termed the waterfall model. There are many
variations of this model, but by and large, the product goes through seven broad phases.
These phases probably do not correspond exactly to the phases of any one particular
organization, but they are sufficiently close to most practices for the purposes of
this book. Similarly, the precise name of each phase varies from organization to
organization. The names used here for the various phases have been chosen to be as
general as possible in the hope that the reader will feel comfortable with them. For
easy reference, the phases are summarized in Figure 1.1, which also indicates the
chapters in this book in which they are presented.

March 15, 2001 16:25 sch95591_ch01 Sheet number 9 Page number 9 black

1.3 ø¸�œ��œ¸œ˚� ¸
æ�˚�
 9

1. Requirements phase (Chapter 10)
2. Specification (analysis) phase (Chapters 11 and 12)
3. Design phase (Chapter 13)
4. Implementation phase (Chapers 14 and 15)
5. Integration phase (Chapter 15)
6. Maintenance phase (Chapter 16)
7. Retirement

Figure 1.1 The phases of the software life cycle and
the chapters in this boo) in which they are presented.

1. Requirements phase. The concept is explored and refined, and the client’s re-
quirements are elicited.

2. Specification (analysis) phase. The client’s requirements are analyzed and pre-
sented in the form of the specification document, “what the product is supposed
to do.” This phase sometimes is called the analysis phase. At the end of this
phase, a plan is drawn up, the software project management plan, describing the
proposed software development in full detail.

3. Design phase. The specifications undergo two consecutive design processes. First
comes architectural design, in which the product as a whole is broken down into
components, called modules. Then, each module is designed; this process is
termed detailed design. The two resulting design documents describe “how the
product does it.”

4. Implementation phase. The various components are coded and tested.

5. Integration phase. The components of the product are combined and tested as
a whole. When the developers are satisfied that the product functions correctly,
it is tested by the client (acceptance testing). This phase ends when the product
is accepted by the client and installed on the client’s computer. (We will see in
Chapter 15 that the integration phase should be performed in parallel with the
implementation phase.)

6. Maintenance phase. The product is used to perform the tasks for which it was de-
veloped. During this time, it is maintained. Maintenance includes all changes to
the product once the client has agreed that it satisfies the specification document
(but see the Just in Case You Wanted to Know box on page 10). Maintenance
includes corrective maintenance (or software repair), which consists of the re-
moval of residual faults while leaving the specifications unchanged, as well as
enhancement (or software update), which consists of changes to the specifica-
tions and the implementation of those changes. There are, in turn, two types of
enhancement. The first is perfective maintenance, changes that the client thinks
will improve the effectiveness of the product, such as additional functionality or
decreased response time. The second is adaptive maintenance, changes made in
response to changes in the environment in which the product operates, such as

March 15, 2001 16:25 sch95591_ch01 Sheet number 10 Page number 10 black

10 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

new government regulations. Studies have indicated that, on average, maintain-
ers spend approximately 17.5 percent of their time on corrective maintenance,
60.5 percent on perfective maintenance, and 18 percent on adaptive maintenance
[Lientz, Swanson, and Tompkins, 1978].

7. Retirement. The product is removed from service. This occurs when the function-
ality provided by the product no longer is of any use to the client organization.

JUST IN CASE YOU WANTED TO KNOW

In the 1970s, software production was viewed as con-
sisting of two distinct activities performed sequentially:
development followed by maintenance. Starting from
scratch, the software product was developed then in-
stalled on the client’s computer. Any change to the soft-
ware after installation, whether to fix a residual fault or
extend the functionality, constituted classical mainte-
nance [IEEE 610.12, 1990]. Hence, the way that soft-
ware was developed classically can be described as the
development-then-maintenance model.

This is a temporal definition; that is, an activity is
classified as development or maintenance depending
on when it is performed. Suppose that a fault in the
software is detected and corrected a day after the soft-
ware has been installed. This clearly constitutes mainte-
nance. But if the identical fault is detected and corrected
the day before the software is installed, in terms of the
classical definition, this constitutes development.

There are two reasons why this model is unrealistic
today. First, nowadays it is certainly not unusual for
construction of a product to take a year or more.
During this time, the client’s requirements may well
change. For example, the client might insist that the
product now be implemented on a faster micropro-
cessor that has become available. Alternatively, the
client organization may have expanded into Canada
while development was under way, and the product
now has to be modified so it also can handle sales in
Canada. To see how this sort of change in requirements
affects the software life cycle, suppose that the client’s
requirements change while the design is being devel-
oped. The software engineering team has to suspend
development and modify the specification document to
reflect the changed requirements. Furthermore, it then
may be necessary to modify the design as well, if the

changes to the specifications necessitate corresponding
changes to those portions of the design already com-
pleted. Only when these changes have been made can
development proceed. In other words, developers have
to perform “maintenance” long before the product is
installed.

A second problem with the classical development-
then-maintenance model arose as a result of the way
in which we now construct software. In classical soft-
ware engineering, a characteristic of development was
that the development team built the target product from
scratch. In contrast, as a consequence of the high cost of
software production today, developers try to reuse parts
of existing software wherever possible in the software
to be constructed (reuse is discussed in detail in Chap-
ter 8). Therefore, the development-then-maintenance
model is inappropriate whenever there is reuse.

A more realistic way of looking at maintenance is
to view maintenance as the process that occurs when
“software undergoes modifications to code and associ-
ated documentation due to a problem or the need for
improvement or adaptation” [ISO/IEC 12207, 1995].
By this definition, maintenance occurs whenever a fault
is fixed or the requirements change, irrespective of
whether this takes place before or after installation of
the product.

However, until such time as the majority of soft-
ware engineers realize that the development-then-
maintenance model is outdated, there is little point in
trying to change the usage of the word maintenance.
In this book, I accordingly still refer to maintenance as
the activity carried out after development is complete
and the product installed. Nevertheless, I hope that the
true nature of maintenance soon will be more widely
recognized.

March 15, 2001 16:25 sch95591_ch01 Sheet number 11 Page number 11 black

1.3 ø¸�œ��œ¸œ˚� ¸
æ�˚�
 11

Returning to the topic of maintenance, it sometimes is said that only bad software
products undergo maintenance. In fact, the opposite is true; bad products are thrown
away, whereas good products are repaired and enhanced, for 10, 15, or even 20 years.
Furthermore, a software product is a model of the real world, and the real world is
perpetually changing. As a consequence, software has to be maintained constantly
for it to remain an accurate reflection of the real world.

For instance, if the sales tax rate changes from 6 percent to 7 percent, almost
every software product that deals with buying or selling has to be changed. Suppose
the product contains the C++ statement

const float salesTax = 6.0;

or the equivalent Java statement

public static final float salesTax = (float) 6.0;

declaring that salesTax is a floating-point constant initialized to the value 6.0. In this
case, maintenance is relatively simple. With the aid of a text editor the value 6.0 is
replaced by 7.0 and the code is recompiled and relinked. However, if instead of using
the name salesTax, the actual value 6.0 has been used in the product wherever the
value of the sales tax is invoked, then such a product will be extremely difficult to
maintain. For example, there may be occurrences of the value 6.0 in the source code
that should be changed to 7.0 but are overlooked or instances of 6.0 that do not refer
to sales tax but incorrectly are changed to 7.0. Finding these faults almost always is
difficult and time consuming. In fact, with some software, it might be less expensive
in the long run to throw away the product and recode it rather than try to determine
which of the many constants need to be changed and how to make the modifications.

The real-time real world also is constantly changing. The missiles with which a jet
fighter is armed may be replaced by a new model, requiring a change to the weapons
control component of the associated avionics system. A six-cylinder engine is to be
offered as an option in a popular four-cylinder automobile; this implies changing the
on-board computer that controls the fuel injection system, timing, and so on.

Healthy organizations change; only dying organizations are static. This means
that maintenance in the form of enhancement is a positive part of an organization’s
activities, reflecting that the organization is on the move.

But just how much time is devoted to maintenance? The pie chart in Figure
1.2 was obtained by averaging data from various sources, including [Elshoff, 1976;
Daly, 1977; Zelkowitz, Shaw, and Gannon, 1979; and Boehm, 1981]. Figure 1.2
shows the approximate percentage of time (= money) spent on each phase of the
software life cycle. About 15 years later, the proportion of time spent on the various
development phases had hardly changed. This is shown in Figure 1.3, which compares
the data in Figure 1.2 with more recent data on 132 Hewlett-Packard projects [Grady,
1994]. The data from Figure 1.2 have been grouped to make them comparable to the
newer data.1

1fligure 1.3 revects only the de-elopment phases. The proportion of de-elopment time de-oted to the require+
ments and specification phases in fligure 1.2 is (2 / 5),33% or 21A% as shown in fligure 1.3.

March 15, 2001 16:25 sch95591_ch01 Sheet number 12 Page number 12 black

12 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

Design
6%

Module

Module

Integration
testing

coding

8%

Specification
(analysis)

5%
Requirements

2%

Maintenance
67%

7%

5%

Figure 1.2 xppro8imate relati-e costs of the phases of the
software life cycle.

Æfl⁄⁄˙˛Œ æ⁄˙Ø�fl�Œ !" ø˙⁄� ¯�fl���
#��fi��� $%& fl�˝ ˇ�fi’���(æflfl)fl⁄˝

 $* æ⁄˙Ø�fl�Œ

Requirements and specification
(analysis) phases 21A 19A

Design phase 19 1j

Implementation phase 36 34

Integration phase 24 2j

Figure 1.3 Comparison of appro8imate a-erage percentages of time spent
on the de-elopment phases for -arious proHects between 1j76 and 1j91 and for
132 more recent Pewlett+Bac)ard proHects.

As can be seen in Figure 1.2, about two-thirds of total software costs were devoted
to maintenance. Newer data confirm the continuing emphasis on maintenance. For
example, in 1992 between 60 and 80 percent of research and development personnel at
Hewlett-Packard were involved in maintenance, and maintenance constituted between
40 and 60 percent of the total cost of software [Coleman, Ash, Lowther, and Oman,
1994]. However, many organizations devote as much as 80 percent of their time and
effort to maintenance [Yourdon, 1996]. Therefore, maintenance is an extremely time
consuming, expensive phase of the software life cycle.

Consider again the software organization currently using coding technique CTold

that learns that CTnew will reduce coding time by 10 percent. Even if CTnew has no

March 15, 2001 16:25 sch95591_ch01 Sheet number 13 Page number 13 black

1.4
æ�˚�+�˚¸��˘œ ¸œ, ,�
�-œ ¸
æ�˚�
 13

adverse effect on maintenance, an astute software manager will think twice before
changing coding practices. The entire staff will have to be retrained, new software
development tools purchased, and perhaps additional staff members hired who are
experienced in the new technique. All this expense and disruption has to be endured
for a possible 0.5 percent decrease in software costs because, as shown in Figure 1.2,
module coding constitutes on average only 5 percent of total software costs.

Now suppose a new technique that reduces maintenance by 10 percent is devel-
oped. This probably should be introduced at once because, on average, it will reduce
overall costs by 6.7 percent. The overhead involved in changing to this technique is
a small price to pay for such large overall savings.

Because maintenance is so important, a major aspect of software engineering
consists of those techniques, tools, and practices that lead to a reduction in mainte-
nance costs.

1.4 SPECIFICATION AND DESIGN ASPECTS
Software professionals are human and therefore sometimes make errors while devel-
oping a product. As a result, there will be a fault in the software. If the error is made
during the requirements phase, then the resulting fault probably also will appear in the
specifications, the design, and the code. Clearly, the earlier we correct a fault, the better.

The relative costs of fixing a fault at various phases in the software life cycle are
shown in Figure 1.4 [Boehm, 1981]. The figure reflects data from IBM [Fagan, 1974],
GTE [Daly, 1977], the Safeguard project [Stephenson, 1976], and some smaller TRW
projects [Boehm, 1980]. The solid line in Figure 1.4 is the best fit for the data relating
to the larger projects, and the dashed line is the best fit for the smaller projects. For
each of the phases of the software life cycle, the corresponding relative cost to detect
and correct a fault is depicted in Figure 1.5. Each step on the solid line in Figure 1.5
is constructed by taking the corresponding point on the solid straight line of Figure
1.4 and plotting the data on a linear scale.

Suppose it costs $40 to detect and correct a specific fault during the design
phase. From the solid line in Figure 1.5 (projects between 1974 and 1980), that same
fault would cost only about $30 to fix during the specification phase. But, during the
maintenance phase, that fault would cost around $2000 to detect and correct. Newer
data show that now it is even more important to detect faults early. The dashed line in
Figure 1.5 shows the cost of detecting and correcting a fault during the development
of system software for the IBM AS/400 [Kan et al., 1994]. On average, the same fault
would have cost $3680 to fix during the maintenance phase of the AS/400 software.

The reason that the cost of correcting a fault increases so steeply is related to
what has to be done to correct a fault. Early in the development life cycle, the product
essentially exists only on paper, and correcting a fault may simply mean using an
eraser and pencil. The other extreme is a product already delivered to a client. At
the very least, correcting a fault means editing the code, recompiling and relinking
it, and then carefully testing that the problem is solved. Next, it is critical to check
that making the change has not created a new problem elsewhere in the product. All

March 15, 2001 16:25 sch95591_ch01 Sheet number 14 Page number 14 black

14 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

1000

Maintenance

Acceptance
test

Integration

Implementation

Design

500

200

100

50

20

10

5

2

1

Larger software projects

IBM-SSD

GTE

80%

20%
SAFEGUARD

R
el

at
iv

e
co

st
to

fix
fa

ul
t

()Median TRW survey

Smaller software projects

[]Boehm, 1980

Requirements
and specification

Phase in which fault was detected and corrected

Figure 1.4 Relati-e cost of fi8ing a fault at each phase of the
software life cycle. The solid line is the best fit for the data relating to
the larger software proHects% and the dashed line is the best fit for the
smaller software proHects. (©arry ©oehm% Software Engineering
Economics, E1j91% p. 40. xdapted by permission of Brentice Pall%
Inc.% Nnglewood Cliffs% JO.)

the relevant documentation, including manuals, then needs to be updated. Finally,
the corrected product must be delivered and installed. The moral of the story is this:
We must find faults early or else it will cost us money. We therefore should employ
techniques for detecting faults during the requirements and specification (analysis)
phases.

There is a further need for such techniques. Studies have shown [Boehm, 1979]
that between 60 and 70 percent of all faults detected in large-scale projects are spec-
ification or design faults. Newer results bear out this preponderance of specification
and design faults. An inspection is a careful examination of a document by a team
(Section 6.2.3). During 203 inspections of Jet Propulsion Laboratory software for the
NASA unmanned interplanetary space program, on average, about 1.9 faults were
detected per page of a specification document, 0.9 faults per page of a design, but
only 0.3 faults per page of code [Kelly, Sherif, and Hops, 1992].

Therefore, it is important that we improve our specification and design techniques,
not only so that faults can be found as early as possible but also because specification
and design faults constitute such a large proportion of all faults. Just as the example
in the previous section showed that reducing maintenance costs by 10 percent will
reduce overall costs by nearly 7 percent, reducing specification and design faults by
10 percent will reduce the overall number of faults by 6 to 7 percent.

March 15, 2001 16:25 sch95591_ch01 Sheet number 15 Page number 15 black

1.5 ��¸ø æ¯˘-¯¸øø�œ- ¸
æ�˚�
 15

Requirements

400

350

300

250

200

150

100

50

368

200

Design Integration
Specification

(Analysis)
Implementation Maintenance

1 3 4 10

52

30

A
pp

ro
xi

m
at

e
re

la
tiv

e
co

st
to

de
te

ct
an

d
co

rr
ec

t
a

fa
ul

t

Projects between 1974 and 1980
[]Kan et al., 1994IBM AS/400

Figure 1.5 The solid line depicts the points on the solid line
of fligure 1.4 plotted on a linear scale. The dashed line depicts
newer data.

Newer data on a number of projects are reported in [Bhandari et al., 1994]. For
example, a compiler was undergoing extensive changes. At the end of the design
phase, the faults detected during the project were categorized. Only 13 percent of
the faults were carry-overs from previous versions of the compiler. Of the remaining
faults, 16 percent were introduced during the specification phase, and 71 percent
were introduced during the design phase. That so many faults are introduced early in
the software life cycle highlights another important aspect of software engineering;
namely, techniques that yield better specifications and designs.

Most software is produced by a team of software engineers rather than by a single
individual responsible for every phase of the development and maintenance life cycle.
We now consider the implications of this.

1.5 TEAM PROGRAMMING ASPECTS
The performance–price factor of a computer may be defined as follows:

performance–price factor = time to perform 1 million additions
× cost of CPU and main memory

March 15, 2001 16:25 sch95591_ch01 Sheet number 16 Page number 16 black

16 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

This quantity has decreased by an order of magnitude with each succeeding
generation of computers. This decrease has been a consequence of discoveries in
electronics, particularly the transistor, and very large-scale integration (VLSI).

The result of these discoveries has been that organizations easily can afford
hardware that can run large products, that is, products too large to be written by
one person within the allowed time constraints. For example, if a product has to be
delivered within 18 months but would take a single programmer 15 years to complete,
then the product must be developed by a team. However, team programming leads
to interface problems among code components and communication problems among
team members.

For example, Joe and Freda code modules p and q, respectively, where module
p calls module q. When Joe codes p, he writes a call to q with five arguments in
the argument list. Freda codes q with five arguments but in a different order from
those of Joe. Unless function prototypes are used, this will not be detected by an
ANSI C compiler. A few software tools, such as the Java interpreter and loader,
lint for C (Section 8.7.4), or an Ada linker, detect such a type violation and only
if the interchanged arguments are of different types; if they are of the same type,
then the problem may not be detected for a long period of time. It may be debated
that this is a design problem, and if the modules had been more carefully designed,
this problem would not have happened. That may be true, but in practice a design
often is changed after coding commences but notification of a change may not be
distributed to all members of the development team. Thus, when a design that af-
fects two or more programmers has been changed, poor communication can lead
to the interface problems Joe and Freda experienced. This sort of problem is less
likely to occur when only one individual is responsible for every aspect of the prod-
uct, as was the case before powerful computers that can run huge products became
affordable.

But interfacing problems are merely the tip of the iceberg when it comes to prob-
lems that can arise when software is developed by teams. Unless the team is properly
organized, an inordinate amount of time can be wasted in conferences between team
members. Suppose that a product takes a single programmer 1 year to complete. If
the same task is assigned to a team of three programmers, the time for completing
the task frequently is closer to 1 year than the expected 4 months, and the quality of
the resulting code may well be lower than if the entire task had been assigned to one
individual. Because a considerable proportion of today’s software is developed and
maintained by teams, the scope of software engineering must include techniques for
ensuring that teams are properly organized and managed.

As has been shown in the preceding sections, the scope of software engineering
is extremely broad. It includes every phase of the software life cycle, from require-
ments to retirement. It also includes human aspects, such as team organization; eco-
nomic aspects; and legal aspects, such as copyright law. All these aspects implicitly
are incorporated in the definition of software engineering given at the beginning of
this chapter; namely, that software engineering is a discipline whose aim is the pro-
duction of fault-free software delivered on time, within budget, and satisfying the
user’s needs.

March 15, 2001 16:25 sch95591_ch01 Sheet number 17 Page number 17 black

1.6 �ˇ� ˘./�˚�(˘¯��œ��, æ¸¯¸,�-ø 17

1.6 THE OBJECT-ORIENTED PARADIGM
Before 1975, most software organizations used no specific techniques; each individual
worked his or her own way. Major breakthroughs were made between approximately
1975 and 1985, with the development of the so-called structured paradigm. The tech-
niques constituting the structured paradigm include structured systems analysis (Sec-
tion 11.3), data flow analysis (Section 7.1), structured programming, and structured
testing (Section 14.8.2). These techniques seemed extremely promising when first
used. However, as time passed, they proved to be somewhat less successful in two
respects. First, the techniques sometimes were unable to cope with the increasing size
of software products. That is, the structured techniques were adequate when dealing
with products of (say) 5,000 or even 50,000 lines of code. Today, however, products
containing 500,000 lines of code are not considered large; even products of 5 mil-
lion or more lines of code are not that unusual. However, the structured techniques
frequently could not scale up sufficiently to handle today’s larger products.

The maintenance phase is the second area in which the structured paradigm did
not live up to earlier expectations. A major driving force behind the development of
the structured paradigm 30 years ago was that, on average, two-thirds of the soft-
ware budget was being devoted to maintenance (see Figure 1.2). Unfortunately, the
structured paradigm has not solved this problem; as pointed out in Section 1.3, many
organizations still spend up to 80 percent of their time and effort on maintenance
[Yourdon, 1996].

The reason for the limited success of the structured paradigm is that the structured
techniques are either action oriented or data oriented but not both. The basic compo-
nents of a software product are the actions2 of the product and the data on which those
actions operate. For example, determine average height is an action that operates
on a collection of heights (data) and returns the average of those heights (data). Some
structured techniques, such as data flow analysis (Section 13.3), are action oriented.
That is, such techniques concentrate on the actions of the product; the data are of
secondary importance. Conversely, techniques such as Jackson system development
(Section 13.5) are data oriented. The emphasis here is on the data; the actions that
operate on the data are less significant.

In contrast, the object-oriented paradigm considers both data and actions to be
equally important. A simplistic way of looking at an object is as a unified software
component that incorporates both the data and the actions that operate on the data. This
definition is incomplete and will be fleshed out later in the book, once inheritance has
been defined (Section 7.7). Nevertheless, the definition captures much of the essence
of an object.

A bank account is one example of an object (see Figure 1.6). The data component
of the object is the account balance. The actions that can be performed on that
account balance include deposit money, withdraw money, and determine balance.
From the viewpoint of the structured paradigm, a product that deals with banking

2The word action is used in this boo) rather than process to a-oid confusion with the term software process.

March 15, 2001 16:25 sch95591_ch01 Sheet number 18 Page number 18 black

18 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

deposit

withdraw

account
balance

message

message

message

account
balance

determine
balance

withdrawdeposit

determine
balance

()a ()b

Figure 1.6 Comparison of implementations of ban) account using (a) structured paradigm and (b) obHect+oriented
paradigm. The solid blac) line surrounding the obHect denotes that details as to how account balance is implemented are not
)nown outside the obHect.

would have to incorporate a data element, the account balance, and three actions,
deposit, withdraw, and determine balance. From the object-oriented viewpoint, a
bank account is an object. This object combines a data element together with the three
actions performed on that data element in a single unit.

Up to now, there seems to be little difference between the two approaches. How-
ever, a key point is the way in which an object is implemented. Specifically, details
as to how the data element of an object is stored are not known from outside the
object. This is an instance of “information hiding” and is discussed in more detail in
Section 7.6. In the case of the bank account object shown in Figure 1.6(b), the rest
of the software product is aware that there is such a thing as a balance within a bank
account object, but it has no idea as to the format of account balance. That is, there
is no knowledge outside the object as to whether the account balance is implemented
as an integer or a floating-point number or whether it is a field (component) of some
larger structure. This information barrier surrounding the object is denoted by the
solid black line in Figure 1.6(b), which depicts an implementation using the object-
oriented paradigm. In contrast, a dashed line surrounds account balance in Figure
1.6(a), because all the details of account balance are known to the modules in the
implementation using the structured paradigm, and the value of account balance
therefore can be changed by any of them.

Returning to Figure 1.6(b), the object-oriented implementation, if a customer
deposits $10 in an account, then a message is sent to the deposit action (method) of the
relevant object telling it to increment the account balance data element (attribute) by
$10. Thedepositmethod is within the bank account object and knows how theaccount
balance is implemented; this is denoted by the dashed line inside the object. But no
entity external to the object needs to have this knowledge. That the three methods in

March 15, 2001 16:25 sch95591_ch01 Sheet number 19 Page number 19 black

1.6 �ˇ� ˘./�˚�(˘¯��œ��, æ¸¯¸,�-ø 19

Figure 1.6(b) shield account balance from the rest of the product symbolizes this
localization of knowledge.

At first sight, the fact that implementation details are local to an object may not
seem to be terribly useful. The payoff comes during maintenance. First, suppose that
the banking product has been constructed using the structured paradigm. If the way
that an account balance is represented is changed from (say) an integer to a field of a
structure, then every part of that product with anything to do with an account balance
has to be changed and these changes have to be made consistently. In contrast, if the
object-oriented paradigm is used, then the only changes that need be made are within
the bank account object itself. No other part of the product has knowledge of how
an account balance is implemented, so no other part can have access to an account
balance. Consequently, no other part of the banking product needs to be changed.
Thus, the object-oriented paradigm makes maintenance quicker and easier, and the
chance of introducing a regression fault (that is, a fault inadvertently introduced into
one part of a product as a consequence of making an apparently unrelated change to
another part of the product) is greatly reduced.

In addition to maintenance benefits, the object-oriented paradigm makes devel-
opment easier. In many instances, an object has a physical counterpart. For example,
the object bank account in the bank product corresponds to an actual bank account in
the bank for which this product is being written. As will be shown in Chapter 12, mod-
eling plays a major role in the object-oriented paradigm. The close correspondence
between the objects in a product and their counterparts in the real world promotes
better software development.

There is yet another way of looking at the benefits of the object-oriented paradigm.
Well-designed objects are independent units. As has been explained, an object con-
sists of both data and the actions performed on the data. If all the actions performed
on the data of an object are included in that object, then the object can be considered
a conceptually independent entity. Everything in the product that relates to the por-
tion of the real world modeled by that object can be found in the object itself. This
conceptual independence sometimes is termed encapsulation (Section 7.4). But there
is an additional form of independence, physical independence. In a well-designed
object, information hiding ensures that implementation details are hidden from ev-
erything outside that object. The only allowable form of communication is the sending
of a message to the object to carry out a specific action. The way that the action is
carried out is entirely the responsibility of the object itself. For this reason, object-
oriented design sometimes is referred to as responsibility-driven design [Wirfs-Brock,
Wilkerson, and Wiener, 1990] or design by contract [Meyer 1992a]. (For another view
of responsibility-driven design, see the Just in Case You Wanted to Know box on
page 20.)

A product built using the structured paradigm essentially is a single unit. This
is one reason why the structured paradigm has been less successful when applied
to larger products. In contrast, when the object-oriented paradigm is used correctly,
the resulting product consists of a number of smaller, largely independent units. The
object-oriented paradigm reduces the level of complexity of a software product and
hence simplifies both development and maintenance.

March 15, 2001 16:25 sch95591_ch01 Sheet number 20 Page number 20 black

20 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

JUST IN CASE YOU WANTED TO KNOW

Suppose that you live in New Orleans, and you want to
have a floral arrangement delivered to your aunt in Iowa
City on her birthday [Budd, 1991]. One way would be
to try to obtain a list of all the florists in Iowa City, then
determine which one is located closest to your aunt’s
home. An easier way is to call 1-800-FLOWERS and
leave the entire responsibility for delivering the floral
arrangement to that organization. You need not know

the identity of the Iowa City florist who will deliver the
flowers.

In exactly the same way, when a message is sent
to an object, not only is it entirely irrelevant how the
request is carried out, but the unit that sends the message
is not even allowed to know the internal structure of the
object. The object itself is entirely responsible for every
detail of carrying out the message.

Another positive feature of the object-oriented paradigm is that it promotes reuse:
Because objects are independent entities, they can be utilized in future products. This
reuse of objects reduces the time and cost of both development and maintenance, as
explained in Chapter 8.

When the object-oriented paradigm is utilized, the software life cycle (Figure
1.1) has to be modified somewhat. Figure 1.7 shows the software life cycles of both
structured and object-oriented paradigms. To appreciate the difference, first consider
the design phase of the structured paradigm. As stated in Section 1.3, this phase
is divided into two subphases: architectural design followed by detailed design. In
the architectural design subphase, the product is decomposed into components, called
modules. Then, during the detailed design subphase, the data structures and algorithms
of each module are designed in turn. Finally, during the implementation phase, these
modules are implemented.

If the object-oriented paradigm is used instead, one of the steps during the object-
oriented analysis phase is to determine the objects. Because an object is a kind of mod-
ule, architectural design therefore is performed during the object-oriented analysis

�⁄˛fl�˛⁄�˝ æfl⁄fl˝⁄ı0 ˘#Ø�fl�(˘⁄⁄����˝ æfl⁄fl˝⁄ı0

1. Requirements phase
2. Specification (analysis) phase
3. Design phase
4. Implementation phase
5. Integration phase
6. Maintenance phase
7. Retirement

1. Requirements phase
2�. >bHect+oriented analysis phase
3�. >bHect+oriented design phase
4�. >bHect+oriented programming phase
5. Integration phase
6. Maintenance phase
7. Retirement

Figure 1.7 Comparison of life cycles of the structured paradigm and the
obHect+oriented paradigm.

March 15, 2001 16:25 sch95591_ch01 Sheet number 21 Page number 21 black

1.7 ��¯ø�œ˘ß˘-1 21

�⁄˛fl�˛⁄�˝ æfl⁄fl˝⁄ı0 ˘#Ø�fl�(˘⁄⁄����˝ æfl⁄fl˝⁄ı0

2. Specification (analysis) phase
• Determine what the product is to do

2�. >bHect+oriented analysis phase
• Determine what the product is to do
• N8tract the obHects

3. Design phase
• xrchitectural design (e8tract the

modules)
• Detailed design

3�. >bHect+oriented design phase
• Detailed design

4. Implementation phase
• Implement in appropriate programming

language

4�. >bHect+oriented programming phase
• Implement in appropriate

obHect+oriented programming language

Figure 1.8 Differences between the structured paradigm and the obHect+oriented paradigm.

phase. Thus, object-oriented analysis goes further than the corresponding specifica-
tion (analysis) phase of the structured paradigm. This is shown in Figure 1.8.

This difference between the two paradigms has major consequences. When the
structured paradigm is used, there almost always is a sharp transition between the
analysis (specification) phase and the design phase. After all, the aim of the specifica-
tion phase is to determine what the product is to do, whereas the purpose of the design
phase is to decide how to do it. In contrast, when object-oriented analysis is used,
objects enter the life cycle from the very beginning. The objects are extracted in the
analysis phase, designed in the design phase, and coded in the implementation phase.
Thus, the object-oriented paradigm is an integrated approach; the transition from
phase to phase is far smoother than with the structured paradigm, thereby reducing
the number of faults during development.

As already mentioned, it is inadequate to define an object merely as a software
component that encapsulates both data and actions and implements the principle of
information hiding. A more complete definition is given in Chapter 7, where objects
are examined in depth. But first, the terminology used in this book must be considered
in greater detail.

1.7 TERMINOLOGY
A word used on almost every page of this book is software. Software consists of
not just code in machine-readable form but also all the documentation that is an
intrinsic component of every project. Software includes the specification document,
the design document, legal and accounting documents of all kinds, the software project
management plan, and other management documents as well as all types of manuals.

March 15, 2001 16:25 sch95591_ch01 Sheet number 22 Page number 22 black

22 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

Since the 1970s, the difference between a program and a system has become
blurred. In the “good old days,” the distinction was clear. A program was an au-
tonomous piece of code, generally in the form of a deck of punched cards, that could
be executed. A system was a related collection of programs. Thus, a system might
consist of programs P, Q, R, and S. Magnetic tape T1 was mounted, then program P
was run. It caused a deck of data cards to be read in and produced as output tapes
T2 and T3. Tape T2 then was rewound, and program Q was run, producing tape T4 as
output. Program R now merged tapes T3 and T4 into tape T5; T5 served as input for
program S, which printed a series of reports.

Compare that situation with a product, running on a machine with a front-end
communications processor and a back-end database manager, that performs real-time
control of a steel mill. The single piece of software controlling the steel mill does far
more than the old-fashioned system, but in terms of the classic definitions of program
and system, this software undoubtedly is a program. To add to the confusion, the term
system now also is used to denote the hardware–software combination. For example,
the flight control system in an aircraft consists of both the in-flight computers and
the software running on them. Depending on who is using the term, the flight control
system also may include the controls, such as the joystick, that send commands to
the computer and the parts of the aircraft, such as the wing flaps, controlled by the
computer.

To minimize confusion, this book uses the term product to denote a nontrivial
piece of software. There are two reasons for this convention. The first is simply to
obviate the program versus system confusion by using a third term. The second reason
is more important. This book deals with the process of software production, and the
end result of a process is termed a product. Software production consists of two
activities: software development followed by maintenance. Finally, the term system
is used in its modern sense, that is, the combined hardware and software, or as part of
universally accepted phrases, such as operating system and management information
system.

Two words widely used within the context of software engineering are method-
ology and paradigm. Both are used in the same sense, a collection of techniques for
carrying out the complete life cycle. This usage offends language purists; after all,
methodology means the science of methods and a paradigm is a model or a pattern.
Notwithstanding the best efforts of the author and others to encourage software en-
gineers to use the words correctly, the practice is so widespread that, in the interests
of clarity, both words are used in this book in the sense of a collection of techniques.
Erudite readers offended by this corruption of the English language are warmly in-
vited to take up the cudgels of linguistic accuracy on the author’s behalf; he is tired
of tilting at windmills.

One term that is avoided as far as possible is bug (the history of this word is in the
Just in Case You Wanted to Know box on page 23). The term bug nowadays is simply a
euphemism for error. Although there generally is no real harm in using euphemisms,
the word bug has overtones that are not conducive to good software production.
Specifically, instead of saying, “I made an error,” a programmer will say, “A bug
crept into the code” (not my code but the code), thereby transferring responsibility for
the error from the programmer to the bug. No one blames a programmer for coming

March 15, 2001 16:25 sch95591_ch01 Sheet number 23 Page number 23 black

˚ˇ¸æ��¯ ¯�Æ��2 23

JUST IN CASE YOU WANTED TO KNOW

The first use of the word bug to denote a fault is at-
tributed to the late Rear Admiral Grace Murray Hop-
per, one of the designers of COBOL. On September
9, 1945, a moth flew into the Mark II computer that
Hopper and her colleagues used at Harvard and lodged
between the contact plates of a relay. Thus, there was
actually a bug in the system. Hopper taped the bug to
the log book and wrote, “First actual case of bug being
found.” The log book, with moth still attached, is in the
Naval Museum at the Naval Surface Weapons Center,
in Dahlgren, Virginia.

Although this may have been the first use of bug
in a computer context, the word was used in engineering

slang in the 19th century [Shapiro, 1994]. For exam-
ple, Thomas Alva Edison wrote on November 18, 1878,
“This thing gives out and then that—‘Bugs’—as such
little faults and difficulties are called …” [Josephson,
1992]. One of the definitions of bug in the 1934 edition
of Webster’s New English Dictionary is “A defect in
apparatus or its operation.” It is clear from Hopper’s
remark that she, too, was familiar with the use of the
word in that context; otherwise, she would have ex-
plained what she meant.

down with a case of influenza, because the flu is caused by the flu bug. Referring to
an error as a bug is a way of casting off responsibility. In contrast, the programmer
who says, “I made an error,” is a computer professional who takes responsibility for
his or her actions.

There is considerable confusion regarding object-oriented terminology. For ex-
ample, in addition to the term attribute for a data component of an object, the term
state variable sometimes is used in the object-oriented literature. In Java, the term
is instance variable; in C++, the term field is used. With regard to the actions of
an object, the term method usually is used; in C++, however, the term is member
function. In C++, a member of an object refers to either an attribute (“field”) or a
method. In Java, the term field is used to denote either an attribute (“instance vari-
able”) or a method. To avoid confusion, wherever possible, the generic terms attribute
and method are used in this book.

Fortunately, some terminology is widely accepted. For example, when a method
within an object is invoked, this almost universally is termed sending a message to
the object.

In this section we defined the various terms used in this book. One of those terms,
process, is the subject of the next chapter.

CHAPTER REVIEW
Software engineering is defined (Section 1.1) as a discipline whose aim is the pro-
duction of fault-free software that satisfies the user’s needs and is delivered on time
and within budget. To achieve this goal, appropriate techniques have to be used in

March 15, 2001 16:25 sch95591_ch01 Sheet number 24 Page number 24 black

24 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

all phases of software production, including specification (analysis) and design (Sec-
tion 1.4) and maintenance (Section 1.3). Software engineering addresses all phases
of the software life cycle and incorporates aspects of many different areas of human
knowledge, including economics (Section 1.2) and the social sciences (Section 1.5).
In Section 1.6, objects are introduced, and a brief comparison between the struc-
tured and object-oriented paradigms is made. In the final section (Section 1.7), the
terminology used in this book is explained.

FOR FURTHER READING
A classic source of information on the scope of software engineering is [Boehm,
1976]. [DeMarco and Lister, 1989] is a report on the extent to which software engi-
neering techniques actually are used. For an analysis of the extent to which software
engineering can be considered to be a true engineering discipline, see [Wasserman,
1996] and [Ebert, Matsubara, Pezzé, and Bertelsen, 1997]. The future of software
engineering is discussed in [Lewis 1996a, 1996b; Leveson, 1997; Brereton et al.,
1999; Kroeker et al., 1999; and Finkelstein, 2000]. Critical factors in software de-
velopment are discussed in the May/June 1999 issue of IEEE Software, especially
[Reel, 1999].

The current practice of software engineering is described in [Yourdon, 1996].
For a view on the importance of maintenance in software engineering and how to
plan for it, see [Parnas, 1994]. The unreliability of software and the resulting risks
(especially in safety-critical systems) are discussed in [Littlewood and Strigini, 1992;
Mellor, 1994; and Neumann, 1995]. Modern views of the software crisis appear in
[Gibbs, 1994] and [Glass, 1998]. [Zvegintzov, 1998] explains how little accurate data
on software engineering practice actually is available.

The fact that mathematics underpins software engineering is stressed in [Parnas,
1990]. The importance of economics in software engineering is discussed in [Boehm,
1981] and [Baetjer, 1996].

Two classic books on the social sciences and software engineering are [Weinberg,
1971] and [Shneiderman, 1980]. Neither book requires prior knowledge of psychology
or the behavioral sciences in general. A newer book on the topic is [DeMarco and
Lister, 1987].

Brooks’s timeless work, The Mythical Man-Month [Brooks, 1975], is a highly
recommended introduction to the realities of software engineering. The book includes
sections on all the topics mentioned in this chapter.

Excellent introductions to the object-oriented paradigm are [Budd, 1991] and
[Meyer, 1997]. A balanced perspective of the paradigm is given in [Radin, 1996].
[Khan, Al-A’ali, and Girgis, 1995] explains the differences between the classical and
object-oriented paradigms. Three successful projects carried using the object-oriented
paradigm are described in [Capper, Colgate, Hunter, and James, 1994]. A survey of the
attitudes of 150 experienced software developers toward the object-oriented paradigm
is reported in [Johnson, 2000]. Lessons learned from developing large-scale object-
oriented products are presented in [Maring, 1996] and [Fichman and Kemerer, 1997].

March 15, 2001 16:25 sch95591_ch01 Sheet number 25 Page number 25 black

æ¯˘.ß�ø
 25

[Scholtz et al., 1993] is a report on a workshop held in April 1993 on the state of
the art and the practice of object-oriented programming. A variety of short articles
on recent trends in the object-oriented paradigm can be found in [El-Rewini et al.,
1995]. Important articles on the object-oriented paradigm are found in the October
1992 issue of IEEE Computer, the January 1993 issue of IEEE Software, and the
January 1993 and November 1993 issues of the Journal of Systems and Software.
Potential pitfalls of the object-oriented paradigm are described in [Webster, 1995].

PROBLEMS
 3 You are in charge of developing a raw materials control system for a major manu-

facturer of digital telephones. Your development budget is $430,000. Approximately
how much money should you devote to each phase of the development life cycle?
How much do you expect future maintenance will cost?

 3" You are a software-engineering consultant. The executive vice-president of a pub-
lisher of paperback books wants you to develop a product that will carry out all the
accounting functions of the company and provide online information to the head office
staff regarding orders and inventory in the various company warehouses. Terminals
are required for 15 accounting clerks, 32 order clerks, and 42 warehouse clerks. In
addition, 18 managers need access to the data. The president is willing to pay $30,000
for the hardware and the software together and wants the complete product in 4 weeks.
What do you tell him? Bear in mind that, as a consultant, you want his business, no
matter how unreasonable his request.

 3! You are a vice-admiral of the Navy of the Republic of Claremont. It has been decided
to call in a software development organization to develop the control software for a
new generation of ship-to-ship missiles. You are in charge of supervising the project.
To protect the government of Claremont, what clauses do you include in the contract
with the software developers?

 34 You are a software engineer and your job is to supervise the development of the
software in Problem 1.3. List ways your company can fail to satisfy the contract with
the Navy. What are the probable causes of such failures?

 35 Fifteen months after delivery, a fault is detected in a mechanical engineering product
that determines the optimal viscosity of oil in internal combustion engines. The cost
of fixing the fault is $18,730. The cause of the fault is an ambiguous sentence in
the specification document. Approximately how much would it have cost to have
corrected the fault during the specification phase?

 3& Suppose that the fault in Problem 1.5 had been detected during the implementation
phase. Approximately how much would it have cost to have fixed it then?

 3% You are the president of an organization that builds large-scale software. You show
Figure 1.5 to your employees, urging them to find faults early in the software life cycle.
Someone responds that it is unreasonable to expect anyone to remove faults before
having entered the product. For example, how can anyone remove a fault during the
design phase if the fault in question is a coding fault? What do you reply?

March 15, 2001 16:25 sch95591_ch01 Sheet number 26 Page number 26 black

26 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

 3* Look up the word system in a dictionary. How many different definitions are there?
Write down those definitions that are applicable within the context of software
engineering.

 3$ It is your first day at your first job. Your manager hands you a listing and says, “See
if you can find the bug.” What do you reply?

 3 6 You are in charge of developing the product in Problem 1.1. Will you use the object-
oriented paradigm or the structured paradigm? Give reasons for your answer.

 3 (Term Project) Suppose that the Broadlands Area Children’s Hospital (BACH) product
of Appendix A has been implemented exactly as described. Now the Joining Children
with their Families (JCF) program is to be extended to all patients, not just those living
within a 500-mile radius of the city of Broadlands. In what ways will the existing
product have to be changed? Would it be better to discard everything and start again
from scratch?

 3 " (Readings in Software Engineering) Your instructor will distribute copies of [Reel,
1999]. How would you manage a product to be able to detect any signs of project
failure as early as possible?

REFERENCES
[Baetjer, 1996] H. Baetjer, Software as Capital: An Economic Perspective on Software

Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1996.
[Bhandari et al., 1994] I. Bhandari, M. J. Halliday, J. Chaar, R. Chillarege, K. Jones,

J. S. Atkinson, C. Lepori-Costello, P. Y. Jasper, E. D. Tarver, C. C. Lewis, and
M. Yonezawa, “In-Process Improvement through Defect Data Interpretation,” IBM
Systems Journal 33 (No. 1, 1994), pp. 182–214.

[Boehm, 1976] B. W. Boehm, “Software Engineering,” IEEE Transactions on Computers
C-25 (December 1976), pp. 1226–41.

[Boehm, 1979] B. W. Boehm, “Software Engineering, R & D Trends and Defense Needs,” in
Research Directions in Software Technology, P. Wegner (Editor), The MIT Press,
Cambridge, MA, 1979.

[Boehm, 1980] B. W. Boehm, “Developing Small-Scale Application Software Products:
Some Experimental Results,” Proceedings of the Eighth IFIP World Computer
Congress, October 1980, pp. 321–26.

[Boehm, 1981] B. W. Boehm, Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ, 1981.

[Brereton et al., 1999] P. Brereton, D. Budgen, K. Bennett, M. Munro, P. Layzell,
L. Macaulay, D. Griffiths, and C. Stannett, “The Future of Software,”
Communications of the ACM 42 (December 1999), pp. 78–84.

[Brooks, 1975] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley, Reading, MA, 1975. Twentieth Anniversary Edition,
Addison-Wesley, Reading, MA, 1995.

[Budd, 1991] T. A. Budd, An Introduction to Object-Oriented Programming,
Addison-Wesley, Reading, MA, 1991.

March 15, 2001 16:25 sch95591_ch01 Sheet number 27 Page number 27 black

¯�+�¯�œ˚�
 27

[Capper, Colgate, Hunter, and James, 1994] N. P. Capper, R. J. Colgate, J. C. Hunter, and
M. F. James, “The Impact of Object-Oriented Technology on Software Quality: Three
Case Histories,” IBM Systems Journal 33 (No. 1, 1994), pp. 131–57.

[Coleman, Ash, Lowther, and Oman, 1994] D. Coleman, D. Ash, B. Lowther, and
P. Oman, “Using Metrics to Evaluate Software System Maintainability,” IEEE
Computer 27 (August 1994), pp. 44–49.

[Daly, 1977] E. B. Daly, “Management of Software Development,” IEEE Transactions on
Software Engineering SE-3 (May 1977), pp. 229–42.

[DeMarco and Lister, 1987] T. DeMarco and T. Lister, Peopleware: Productive Projects
and Teams, Dorset House, New York, 1987.

[DeMarco and Lister, 1989] T. DeMarco and T. Lister, “Software Development: The State
of the Art vs. State of the Practice,” Proceedings of the 11th International Conference on
Software Engineering, Pittsburgh, May 1989, pp. 271–75.

[Ebert, Matsubara, Pezzé, and Bertelsen, 1997] C. Ebert, T. Matsubara, M. Pezzé, and
O. W. Bertelsen, “The Road to Maturity: Navigating between Craft and Science,”
IEEE Software 14 (November/December 1997), pp. 77–88.

[El-Rewini et al., 1995] H. El-Rewini, S. Hamilton, Y.-P. Shan, R. Earle,
S. McGaughey, A. Helal, R. Badrachalam, A. Chien, A. Grimshaw, B. Lee,
A. Wade, D. Morse, A. Elmagramid, E. Pitoura, R. Binder, and P. Wegner,
“Object Technology,” IEEE Computer 28 (October 1995), pp. 58–72.

[Elshoff, 1976] J. L. Elshoff, “An Analysis of Some Commercial PL/I Programs,” IEEE
Transactions on Software Engineering SE-2 (June 1976), 113–20.

[Fagan, 1974] M. E. Fagan, “Design and Code Inspections and Process Control in the
Development of Programs,” Technical Report IBM-SSD TR 21.572, IBM Corporation,
December 1974.

[Fichman and Kemerer, 1997] R. G. Fichman and C. F. Kemerer, “Object Technology and
Reuse: Lessons from Early Adopters,” IEEE Computer 30 (July 1997), pp. 47–57.

[Finkelstein, 2000] A. Finkelstein (Editor), The Future of Software Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 2000.

[Gibbs, 1994] W. W. Gibbs, “Software’s Chronic Crisis,” Scientific American 271
(September 1994), pp. 86–95.

[Glass, 1998] R. L. Glass, “Is There Really a Software Crisis?” IEEE Software 15
(January/February 1998), pp. 104–5.

[Grady, 1994] R. B. Grady, “Successfully Applying Software Metrics,” IEEE Computer 27
(September 1994), pp. 18–25.

[IEEE 610.12, 1990] “A Glossary of Software Engineering Terminology,” IEEE 610.12-1990,
Institute of Electrical and Electronic Engineers, Inc., New York, 1990.

[ISO/IEC 12207, 1995] “ISO/IEC 12207:1995, Information Technology—Software
Life-Cycle Processes,” International Organization for Standardization, International
Electrotechnical Commission, Geneva, 1995.

[Johnson, 2000] R. A. Johnson, “The Ups and Downs of Object-Oriented System
Development,” Communications of the ACM 43 (October 2000), pp. 69–73.

[Josephson, 1992] M. Josephson, Edison: A Biography, John Wiley and Sons, New York,
1992.

[Kan et al., 1994] S. H. Kan, S. D. Dull, D. N. Amundson, R. J. Lindner, and
R. J. Hedger, “AS/400 Software Quality Management,” IBM Systems Journal 33
(No. 1, 1994), pp. 62–88.

[Kelly, Sherif, and Hops, 1992] J. C. Kelly, J. S. Sherif, and J. Hops, “An Analysis of
Defect Densities Found during Software Inspections,” Journal of Systems and Software
17 (January 1992), pp. 111–17.

March 15, 2001 16:25 sch95591_ch01 Sheet number 28 Page number 28 black

28 C H A P T E R 1 • �`�
fl˙´� ˙�
˙��fifl⁄� ��ı⁄���⁄⁄�ı

[Khan, Al-A’ali, and Girgis, 1995] E. H. Khan, M. Al-A’ali, and M. R. Girgis,
“Object-Oriented Programming for Structured Procedural Programming,” IEEE
Computer 28 (October 1995), pp. 48–57.

[Kroeker et al., 1999] K. K. Kroeker, L. Wall, D. A. Taylor, C. Horn, P. Bassett,
J. K. Ousterhout, M. L. Griss, R. M. Soley, J. Waldo, and C. Simonyi, “Software
[R]evolution: A Roundtable,” IEEE Computer 32 (May 1999), pp. 48–57.

[Leveson, 1997] N. G. Leveson, “Software Engineering: Stretching the Limits of
Complexity,” Communications of the ACM 40 (February 1997), pp. 129–31.

[Leveson and Turner, 1993] N. G. Leveson and C. S. Turner, “An Investigation of the
Therac-25 Accidents,” IEEE Computer 26 (July 1993), pp. 18–41.

[Lewis, 1996a] T. Lewis, “The Next 10,0002 Years: Part I,” IEEE Computer 29 (April 1996),
pp. 64–70.

[Lewis, 1996b] T. Lewis, “The Next 10,0002 Years: Part II,” IEEE Computer 29 (May 1996),
pp. 78–86.

[Lientz, Swanson, and Tompkins, 1978] B. P. Lientz, E. B. Swanson, and G. E. Tompkins,
“Characteristics of Application Software Maintenance,” Communications of the ACM
21 (June 1978), pp. 466–71.

[Littlewood and Strigini, 1992] B. Littlewood and L. Strigini, “The Risks of Software,”
Scientific American 267 (November 1992), pp. 62–75.

[Maring, 1996] B. Maring, “Object-Oriented Development of Large Applications,” IEEE
Software 13 (May 1996), pp. 33–40.

[Mellor, 1994] P. Mellor, “CAD: Computer-Aided Disaster,” Technical Report, Centre for
Software Reliability, City University, London, U.K., July 1994.

[Meyer, 1992a] B. Meyer, “Applying ‘Design by Contract’,” IEEE Computer 25 (October
1992), pp. 40–51.

[Meyer, 1997] B. Meyer, Object-Oriented Software Construction, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 1997.

[Naur, Randell, and Buxton, 1976] P. Naur, B. Randell, and J. N. Buxton (Editors),
Software Engineering: Concepts and Techniques: Proceedings of the NATO
Conferences, Petrocelli-Charter, New York, 1976.

[Neumann, 1980] P. G. Neumann, Letter from the Editor, ACM SIGSOFT Software
Engineering Notes 5 (July 1980), p. 2.

[Neumann, 1995] P. G. Neumann, Computer-Related Risks, Addison-Wesley, Reading, MA,
1995.

[Parnas, 1990] D. L. Parnas, “Education for Computing Professionals,” IEEE Computer 23
(January 1990), pp. 17–22.

[Parnas, 1994] D. L. Parnas, “Software Aging,” Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 279–87.

[Radin, 1996] G. Radin, “Object Technology in Perspective,” IBM Systems Journal 35
(No. 2, 1996), pp. 124–126.

[Reel, 1999] J. S. Reel, “Critical Success Factors in Software Projects,” IEEE Software 16
(May/June 1999), pp. 18–23.

[Scholtz et al., 1993] J. Scholtz, S. Chidamber, R. Glass, A. Goerner, M. B. Rosson.,
M. Stark, and I. Vessey, “Object-Oriented Programming: The Promise and the
Reality,” Journal of Systems and Software 23 (November 1993), pp. 199–204.

[Shapiro, 1994] F. R. Shapiro, “The First Bug,” Byte 19 (April 1994), p. 308.
[Shneiderman, 1980] B. Shneiderman, Software Psychology: Human Factors in Computer

and Information Systems, Winthrop Publishers, Cambridge, MA, 1980.
[Stephenson, 1976] W. E. Stephenson, “An Analysis of the Resources Used in Safeguard

System Software Development,” Bell Laboratories, Draft Paper, August 1976.

March 15, 2001 16:25 sch95591_ch01 Sheet number 29 Page number 29 black

¯�+�¯�œ˚�
 29

[Wasserman, 1996] A. I. Wasserman, “Toward a Discipline of Software Engineering,” IEEE
Software 13 (November/December 1996), pp. 23–31.

[Webster, 1995] B. F. Webster, Pitfalls of Object-Oriented Development, M&T Books, New
York, 1995.

[Weinberg, 1971] G. M. Weinberg, The Psychology of Computer Programming,
Van Nostrand Reinhold, New York, 1971.

[Wirfs-Brock, Wilkerson, and Wiener, 1990] R. Wirfs-Brock, B. Wilkerson, and
L. Wiener, Designing Object-Oriented Software, Prentice Hall, Englewood Cliffs, NJ,
1990.

[Yourdon, 1996] E. Yourdon, Rise and Resurrection of the American Programmer, Yourdon
Press, Upper Saddle River, NJ, 1996.

[Zelkowitz, Shaw, and Gannon, 1979] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon,
Principles of Software Engineering and Design, Prentice Hall, Englewood Cliffs, NJ,
1979.

[Zvegintzov, 1998] N. Zvegintzov, “Frequently Begged Questions and How to Answer
Them,” IEEE Software 15 (January/February 1998), pp. 93–96.

