В B7039

Total Pages: 2 Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017 **Course Code: IT303 Course Name: THEORY OF COMPUTATION (IT)** Max. Marks: 100 **Duration: 3 Hours PART A** Marks Answer any two full questions, each carries 15 marks. a) Define the following 1 (3) (i) Language (ii) Finite Automata (iii) Transition diagram b) Design a moore machine which count the number of occurrence of substring aab (7) in a given string c) Prove that L is accepted by an NFA if and only if L is accepted by DFA (5) a) Discuss about Chomsky classification of language 2 (5) b) Prove the equivalence of moore and mealy machine (5) c) Construct a DFA that accepts all strings on {0,1}, except those containing the (5) substring 001. 3 Minimize the following DFA **(7)** 0 C В Α В D E C F G *D Е D E F G*F Е D *G F G b) Prove that L is accepted by an NFA- ε if and only if L is accepted by NFA (5)

- (3)
- c) Define the following

- (i) Kleene star
- (ii) Concatenation
- Reversal (iii)

PART B

Answer any two full questions, each carries 15 marks.

4 a) What is a regular expression? Write a regular expression that accept all strings on $\{0,1\}$ such that it accepts at most one pair of consecutive 1's

B B7039

	b)	What is ambiguous CFG? Show that the grammer	(5)
		$E \to E + E E * E (E) I$	
		$I \rightarrow a b c$ is ambiguous	
	c)	Design a PDA to accept $L=\{0^n1^m0^m1^n m,n \ge 1\}$	(5)
5	a)	State pumping lemma for regular languages. Use pumping lemma to show that	(8)
		$L=\{a^p p \text{ is a prime}\}\ \text{is not regular}$	
	b)	Convert the grammer $S \to AB$, $A \to BS b$, $B \to SA a$ into GNF	(4)
	c)	Construct the PDA equivalent to the following grammer	(3)
		$S \rightarrow 0BB, B \rightarrow 0S 1S 0$	
6	a)	Use pumping lemma to show that a ⁿ n is a perfect cube is not a CFL	(5)
	b)	Prove that regular expression is closed under homomorphism	(5)
	c)	Give CFG for the following regular expression (0+11)*(011)1*	(5)
		PART C	
		Answer any two full questions, each carries 20 marks.	
7	a)	Write note on variants of Turing Machine. Show that multi tape TM is equivalent	(9)
		to single tape TM.	
	b)	Design a TM which finds 2's complement of a given number.	(8)
	c)	Prove that the complement of recursive language is recursive.	(3)
8	a)	What is Linear Bound Automata?	(5)
	b)	Construct T.M which accepts the language L= $\{a^nb^nc^n n \ge 1\}$	(8)
	c)	Prove that the halting problem is undecidable.	(7)
9	a)	Explain post correspondence problem.	(5)
	b)	Prove that universal language is recursively enumerable.	(8)
	c)	Construct T.M which reverse a string	(7)
